These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

254 related articles for article (PubMed ID: 32926162)

  • 21. RResolver: efficient short-read repeat resolution within ABySS.
    Nikolić V; Afshinfard A; Chu J; Wong J; Coombe L; Nip KM; Warren RL; Birol I
    BMC Bioinformatics; 2022 Jun; 23(1):246. PubMed ID: 35729491
    [TBL] [Abstract][Full Text] [Related]  

  • 22. De novo assembly of viral quasispecies using overlap graphs.
    Baaijens JA; Aabidine AZE; Rivals E; Schönhuth A
    Genome Res; 2017 May; 27(5):835-848. PubMed ID: 28396522
    [TBL] [Abstract][Full Text] [Related]  

  • 23. cloudSPAdes: assembly of synthetic long reads using de Bruijn graphs.
    Tolstoganov I; Bankevich A; Chen Z; Pevzner PA
    Bioinformatics; 2019 Jul; 35(14):i61-i70. PubMed ID: 31510642
    [TBL] [Abstract][Full Text] [Related]  

  • 24. TraRECo: a greedy approach based de novo transcriptome assembler with read error correction using consensus matrix.
    Yoon S; Kim D; Kang K; Park WJ
    BMC Genomics; 2018 Sep; 19(1):653. PubMed ID: 30180798
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Accurate determination of node and arc multiplicities in de bruijn graphs using conditional random fields.
    Steyaert A; Audenaert P; Fostier J
    BMC Bioinformatics; 2020 Sep; 21(1):402. PubMed ID: 32928110
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Benchmarking of de novo assembly algorithms for Nanopore data reveals optimal performance of OLC approaches.
    Cherukuri Y; Janga SC
    BMC Genomics; 2016 Aug; 17 Suppl 7(Suppl 7):507. PubMed ID: 27556636
    [TBL] [Abstract][Full Text] [Related]  

  • 27. deGSM: Memory Scalable Construction Of Large Scale de Bruijn Graph.
    Guo H; Fu Y; Gao Y; Li J; Wang Y; Liu B
    IEEE/ACM Trans Comput Biol Bioinform; 2021; 18(6):2157-2166. PubMed ID: 31056509
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Scalable Genome Assembly through Parallel de Bruijn Graph Construction for Multiple k-mers.
    Mahadik K; Wright C; Kulkarni M; Bagchi S; Chaterji S
    Sci Rep; 2019 Oct; 9(1):14882. PubMed ID: 31619717
    [TBL] [Abstract][Full Text] [Related]  

  • 29. FastEtch: A Fast Sketch-Based Assembler for Genomes.
    Ghosh P; Kalyanaraman A
    IEEE/ACM Trans Comput Biol Bioinform; 2019; 16(4):1091-1106. PubMed ID: 28910776
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Paired de bruijn graphs: a novel approach for incorporating mate pair information into genome assemblers.
    Medvedev P; Pham S; Chaisson M; Tesler G; Pevzner P
    J Comput Biol; 2011 Nov; 18(11):1625-34. PubMed ID: 21999285
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Succinct colored de Bruijn graphs.
    Muggli MD; Bowe A; Noyes NR; Morley PS; Belk KE; Raymond R; Gagie T; Puglisi SJ; Boucher C
    Bioinformatics; 2017 Oct; 33(20):3181-3187. PubMed ID: 28200001
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Multiplex de Bruijn graphs enable genome assembly from long, high-fidelity reads.
    Bankevich A; Bzikadze AV; Kolmogorov M; Antipov D; Pevzner PA
    Nat Biotechnol; 2022 Jul; 40(7):1075-1081. PubMed ID: 35228706
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Improved Node and Arc Multiplicity Estimation in De Bruijn Graphs Using Approximate Inference in Conditional Random Fields.
    Steyaert A; Audenaert P; Fostier J
    IEEE/ACM Trans Comput Biol Bioinform; 2023; 20(3):1995-2006. PubMed ID: 37015543
    [TBL] [Abstract][Full Text] [Related]  

  • 34. ViPRA-Haplo: De Novo Reconstruction of Viral Populations Using Paired End Sequencing Data.
    Li W; Malhotra R; Wu S; Jha M; Rodrigo A; Poss M; Acharya R
    IEEE/ACM Trans Comput Biol Bioinform; 2024; 21(3):492-500. PubMed ID: 38451771
    [TBL] [Abstract][Full Text] [Related]  

  • 35. deBGA: read alignment with de Bruijn graph-based seed and extension.
    Liu B; Guo H; Brudno M; Wang Y
    Bioinformatics; 2016 Nov; 32(21):3224-3232. PubMed ID: 27378303
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Compacting de Bruijn graphs from sequencing data quickly and in low memory.
    Chikhi R; Limasset A; Medvedev P
    Bioinformatics; 2016 Jun; 32(12):i201-i208. PubMed ID: 27307618
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Coverage-preserving sparsification of overlap graphs for long-read assembly.
    Jain C
    Bioinformatics; 2023 Mar; 39(3):. PubMed ID: 36892439
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Scalable, ultra-fast, and low-memory construction of compacted de Bruijn graphs with Cuttlefish 2.
    Khan J; Kokot M; Deorowicz S; Patro R
    Genome Biol; 2022 Sep; 23(1):190. PubMed ID: 36076275
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Viral quasispecies reconstruction via tensor factorization with successive read removal.
    Ahn S; Ke Z; Vikalo H
    Bioinformatics; 2018 Jul; 34(13):i23-i31. PubMed ID: 29949976
    [TBL] [Abstract][Full Text] [Related]  

  • 40. BubbleGun: enumerating bubbles and superbubbles in genome graphs.
    Dabbaghie F; Ebler J; Marschall T
    Bioinformatics; 2022 Sep; 38(17):4217-4219. PubMed ID: 35799353
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.