BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 32926189)

  • 1. Muscle insulin resistance in type 1 diabetes with coronary artery disease.
    Williams KV; Shay CM; Price JC; Goodpaster BH; Kelley CA; Kelley DE; Orchard TJ
    Diabetologia; 2020 Dec; 63(12):2665-2674. PubMed ID: 32926189
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Impact of type 2 diabetes on myocardial insulin sensitivity to glucose uptake and perfusion in patients with coronary artery disease.
    Søndergaard HM; Bøttcher M; Marie Madsen M; Schmitz O; Hansen SB; Nielsen TT; Bøtker HE
    J Clin Endocrinol Metab; 2006 Dec; 91(12):4854-61. PubMed ID: 16984986
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Similar patterns of myocardial metabolism and perfusion in patients with type 2 diabetes and heart disease of ischaemic and non-ischaemic origin.
    Masi S; Lautamäki R; Guiducci L; Di Cecco P; Porciello C; Pardini S; Morales MA; Chubuchny V; Salvadori PA; Emdin M; Sironi AM; Knuuti J; Neglia D; Nuutila P; Ferrannini E; Iozzo P
    Diabetologia; 2012 Sep; 55(9):2494-500. PubMed ID: 22752026
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Interactions between delivery, transport, and phosphorylation of glucose in governing uptake into human skeletal muscle.
    Bertoldo A; Pencek RR; Azuma K; Price JC; Kelley C; Cobelli C; Kelley DE
    Diabetes; 2006 Nov; 55(11):3028-37. PubMed ID: 17065339
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Independent association of type 2 diabetes and coronary artery disease with myocardial insulin resistance.
    Iozzo P; Chareonthaitawee P; Dutka D; Betteridge DJ; Ferrannini E; Camici PG
    Diabetes; 2002 Oct; 51(10):3020-4. PubMed ID: 12351442
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dynamic PET imaging reveals heterogeneity of skeletal muscle insulin resistance.
    Ng JM; Bertoldo A; Minhas DS; Helbling NL; Coen PM; Price JC; Cobelli C; Kelley DE; Goodpaster BH
    J Clin Endocrinol Metab; 2014 Jan; 99(1):E102-6. PubMed ID: 24170108
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Myocardial glucose utilization and optimization of (18)F-FDG PET imaging in patients with non-insulin-dependent diabetes mellitus, coronary artery disease, and left ventricular dysfunction.
    Vitale GD; deKemp RA; Ruddy TD; Williams K; Beanlands RS
    J Nucl Med; 2001 Dec; 42(12):1730-6. PubMed ID: 11752067
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Interactions among glucose delivery, transport, and phosphorylation that underlie skeletal muscle insulin resistance in obesity and type 2 Diabetes: studies with dynamic PET imaging.
    Goodpaster BH; Bertoldo A; Ng JM; Azuma K; Pencek RR; Kelley C; Price JC; Cobelli C; Kelley DE
    Diabetes; 2014 Mar; 63(3):1058-68. PubMed ID: 24222345
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Assessment of insulin resistance in the skeletal muscle of mice using positron emission tomography/computed tomography imaging.
    Miyatake Y; Mishima Y; Tsutsumi R; Otani T; Suemasa N; Masumoto S; Kuroda M; Sakaue H
    Biochem Biophys Res Commun; 2020 Jul; 528(3):499-505. PubMed ID: 32513534
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Plasminogen activator inhibitor-1 is associated with coronary artery calcium in Type 1 diabetes.
    Pratte KA; Barón AE; Ogden LG; Hassell KL; Rewers M; Hokanson JE
    J Diabetes Complications; 2009; 23(6):387-93. PubMed ID: 18768333
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Weight loss-induced plasticity of glucose transport and phosphorylation in the insulin resistance of obesity and type 2 diabetes.
    Williams KV; Bertoldo A; Kinahan P; Cobelli C; Kelley DE
    Diabetes; 2003 Jul; 52(7):1619-26. PubMed ID: 12829624
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Interactions of impaired glucose transport and phosphorylation in skeletal muscle insulin resistance: a dose-response assessment using positron emission tomography.
    Williams KV; Price JC; Kelley DE
    Diabetes; 2001 Sep; 50(9):2069-79. PubMed ID: 11522673
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Insulin resistance, defective insulin-mediated fatty acid suppression, and coronary artery calcification in subjects with and without type 1 diabetes: The CACTI study.
    Schauer IE; Snell-Bergeon JK; Bergman BC; Maahs DM; Kretowski A; Eckel RH; Rewers M
    Diabetes; 2011 Jan; 60(1):306-14. PubMed ID: 20978091
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Impaired skeletal muscle glucose uptake by [18F]fluorodeoxyglucose-positron emission tomography in patients with peripheral artery disease and intermittent claudication.
    Pande RL; Park MA; Perlstein TS; Desai AS; Doyle J; Navarrete N; Copeland-Halperin RS; Redline W; Di Carli MF; Creager MA
    Arterioscler Thromb Vasc Biol; 2011 Jan; 31(1):190-6. PubMed ID: 21051665
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In vivo PET imaging with [(18)F]FDG to explain improved glucose uptake in an apolipoprotein A-I treated mouse model of diabetes.
    Cochran BJ; Ryder WJ; Parmar A; Tang S; Reilhac A; Arthur A; Charil A; Hamze H; Barter PJ; Kritharides L; Meikle SR; Gregoire MC; Rye KA
    Diabetologia; 2016 Sep; 59(9):1977-84. PubMed ID: 27193916
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Retrospective study of coronary uptake of 18F-fluorodeoxyglucose in association with calcification and coronary artery disease: a preliminary study.
    Williams G; Kolodny GM
    Nucl Med Commun; 2009 Apr; 30(4):287-91. PubMed ID: 19238108
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Exercise training favors increased insulin-stimulated glucose uptake in skeletal muscle in contrast to adipose tissue: a randomized study using FDG PET imaging.
    Reichkendler MH; Auerbach P; Rosenkilde M; Christensen AN; Holm S; Petersen MB; Lagerberg A; Larsson HB; Rostrup E; Mosbech TH; Sjödin A; Kjaer A; Ploug T; Hoejgaard L; Stallknecht B
    Am J Physiol Endocrinol Metab; 2013 Aug; 305(4):E496-506. PubMed ID: 23800880
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Insulin sensitivity estimates and their longitudinal association with coronary artery disease in type 1 diabetes. Does it matter?
    Mutter S; Parente EB; Januszewski AS; Simonsen JR; Harjutsalo V; Groop PH; Jenkins AJ; Thorn LM;
    Cardiovasc Diabetol; 2024 May; 23(1):152. PubMed ID: 38702680
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ischemic heart failure mortality is not predicted by cardiac insulin resistance but by diabetes per se and coronary flow reserve: A retrospective dynamic cardiac
    Luong TV; Pedersen MGB; Kjærulff MLBG; Madsen S; Lauritsen KM; Tolbod LP; Søndergaard E; Gormsen LC
    Metabolism; 2021 Oct; 123():154862. PubMed ID: 34375646
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Prediction of coronary artery calcium progression by FDG uptake of large arteries in asymptomatic individuals.
    Cho SG; Park KS; Kim J; Kang SR; Kwon SY; Seon HJ; Jabin Z; Kim YJ; Jeong GC; Song M; Song HC; Min JJ; Bom HS
    Eur J Nucl Med Mol Imaging; 2017 Jan; 44(1):129-140. PubMed ID: 27683281
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.