BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

254 related articles for article (PubMed ID: 32926248)

  • 1. miR169 and PmRGL2 synergistically regulate the NF-Y complex to activate dormancy release in Japanese apricot (Prunus mume Sieb. et Zucc.).
    Gao J; Ni X; Li H; Hayat F; Shi T; Gao Z
    Plant Mol Biol; 2021 Jan; 105(1-2):83-97. PubMed ID: 32926248
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Isolation and Role of
    Lv L; Huo X; Wen L; Gao Z; Khalil-Ur-Rehman M
    Front Plant Sci; 2018; 9():27. PubMed ID: 29434610
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparative proteomic and transcriptomic approaches to address the active role of GA4 in Japanese apricot flower bud dormancy release.
    Zhuang W; Gao Z; Wang L; Zhong W; Ni Z; Zhang Z
    J Exp Bot; 2013 Nov; 64(16):4953-66. PubMed ID: 24014872
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Overexpression of Prunus DAM6 inhibits growth, represses bud break competency of dormant buds and delays bud outgrowth in apple plants.
    Yamane H; Wada M; Honda C; Matsuura T; Ikeda Y; Hirayama T; Osako Y; Gao-Takai M; Kojima M; Sakakibara H; Tao R
    PLoS One; 2019; 14(4):e0214788. PubMed ID: 30964897
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Differential expression of proteins associated with seasonal bud dormancy at four critical stages in Japanese apricot.
    Zhuang WB; Shi T; Gao ZH; Zhang Z; Zhang JY
    Plant Biol (Stuttg); 2013 Jan; 15(1):233-42. PubMed ID: 22672637
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Meta-analysis of RNA-Seq studies reveals genes with dominant functions during flower bud endo- to eco-dormancy transition in Prunus species.
    Canton M; Forestan C; Bonghi C; Varotto S
    Sci Rep; 2021 Jun; 11(1):13173. PubMed ID: 34162991
    [TBL] [Abstract][Full Text] [Related]  

  • 7. MiR169 and its target PagHAP2-6 regulated by ABA are involved in poplar cambium dormancy.
    Ding Q; Zeng J; He XQ
    J Plant Physiol; 2016 Jul; 198():1-9. PubMed ID: 27111502
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transcriptome Profiles Reveal the Crucial Roles of Hormone and Sugar in the Bud Dormancy of Prunus mume.
    Zhang Z; Zhuo X; Zhao K; Zheng T; Han Y; Yuan C; Zhang Q
    Sci Rep; 2018 Mar; 8(1):5090. PubMed ID: 29572446
    [TBL] [Abstract][Full Text] [Related]  

  • 9. RNA-Seq-based transcriptome analysis of dormant flower buds of Chinese cherry (Prunus pseudocerasus).
    Zhu Y; Li Y; Xin D; Chen W; Shao X; Wang Y; Guo W
    Gene; 2015 Jan; 555(2):362-76. PubMed ID: 25447903
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Differential expression of dehydrin in flower buds of two Japanese apricot cultivars requiring different chilling requirements for bud break.
    Yamane H; Kashiwa Y; Kakehi E; Yonemori K; Mori H; Hayashi K; Iwamoto K; Tao R; Kataoka I
    Tree Physiol; 2006 Dec; 26(12):1559-63. PubMed ID: 17169895
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Unveiling the effect of gibberellin-induced iron oxide nanoparticles on bud dormancy release in sweet cherry (Prunus avium L.).
    Sabir IA; Manzoor MA; Shah IH; Ahmad Z; Liu X; Alam P; Wang Y; Sun W; Wang J; Liu R; Jiu S; Zhang C
    Plant Physiol Biochem; 2024 Jan; 206():108222. PubMed ID: 38016371
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High-throughput sequencing of small RNAs and analysis of differentially expressed microRNAs associated with pistil development in Japanese apricot.
    Gao Z; Shi T; Luo X; Zhang Z; Zhuang W; Wang L
    BMC Genomics; 2012 Aug; 13():371. PubMed ID: 22863067
    [TBL] [Abstract][Full Text] [Related]  

  • 13. GA
    Yuxi Z; Yanchao Y; Zejun L; Tao Z; Feng L; Chunying L; Shupeng G
    BMC Plant Biol; 2021 Jul; 21(1):323. PubMed ID: 34225663
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mutations in PmUFGT3 contribute to color variation of fruit skin in Japanese apricot (Prunus mume Sieb. et Zucc.).
    Ni X; Ni Z; Ouma KO; Gao Z
    BMC Plant Biol; 2022 Jun; 22(1):304. PubMed ID: 35751035
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Flowering in Persian walnut: patterns of gene expression during flower development.
    Hassankhah A; Rahemi M; Ramshini H; Sarikhani S; Vahdati K
    BMC Plant Biol; 2020 Apr; 20(1):136. PubMed ID: 32245410
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Transcript profiling of Paoenia ostii during artificial chilling induced dormancy release identifies activation of GA pathway and carbohydrate metabolism.
    Gai S; Zhang Y; Liu C; Zhang Y; Zheng G
    PLoS One; 2013; 8(2):e55297. PubMed ID: 23405132
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dormancy-Associated MADS-Box (
    Wang J; Gao Z; Li H; Jiu S; Qu Y; Wang L; Ma C; Xu W; Wang S; Zhang C
    Int J Mol Sci; 2020 Jan; 21(3):. PubMed ID: 32019252
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Genome-wide expression profiles of seasonal bud dormancy at four critical stages in Japanese apricot.
    Zhong W; Gao Z; Zhuang W; Shi T; Zhang Z; Ni Z
    Plant Mol Biol; 2013 Oct; 83(3):247-64. PubMed ID: 23756818
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Differential expression of gibberellin- and abscisic acid-related genes implies their roles in the bud activity-dormancy transition of tea plants.
    Yue C; Cao H; Hao X; Zeng J; Qian W; Guo Y; Ye N; Yang Y; Wang X
    Plant Cell Rep; 2018 Mar; 37(3):425-441. PubMed ID: 29214380
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterization of gibberellin-signalling elements during plum fruit ontogeny defines the essentiality of gibberellin in fruit development.
    El-Sharkawy I; Sherif S; El Kayal W; Mahboob A; Abubaker K; Ravindran P; Jyothi-Prakash PA; Kumar PP; Jayasankar S
    Plant Mol Biol; 2014 Mar; 84(4-5):399-413. PubMed ID: 24142379
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.