These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
4. Single-cell RNA sequencing and bioinformatics as tools to decipher cancer heterogenicity and mechanisms of drug resistance. Rosati D; Giordano A Biochem Pharmacol; 2022 Jan; 195():114811. PubMed ID: 34673017 [TBL] [Abstract][Full Text] [Related]
5. Millefy: visualizing cell-to-cell heterogeneity in read coverage of single-cell RNA sequencing datasets. Ozaki H; Hayashi T; Umeda M; Nikaido I BMC Genomics; 2020 Mar; 21(1):177. PubMed ID: 32122302 [TBL] [Abstract][Full Text] [Related]
6. Cell-level metadata are indispensable for documenting single-cell sequencing datasets. Puntambekar S; Hesselberth JR; Riemondy KA; Fu R PLoS Biol; 2021 May; 19(5):e3001077. PubMed ID: 33945522 [TBL] [Abstract][Full Text] [Related]
7. Cancer cell states: Lessons from ten years of single-cell RNA-sequencing of human tumors. Tirosh I; Suva ML Cancer Cell; 2024 Sep; 42(9):1497-1506. PubMed ID: 39214095 [TBL] [Abstract][Full Text] [Related]
8. Single-cell transcriptomics in cancer: computational challenges and opportunities. Fan J; Slowikowski K; Zhang F Exp Mol Med; 2020 Sep; 52(9):1452-1465. PubMed ID: 32929226 [TBL] [Abstract][Full Text] [Related]
9. Data Analysis in Single-Cell Transcriptome Sequencing. Gao S Methods Mol Biol; 2018; 1754():311-326. PubMed ID: 29536451 [TBL] [Abstract][Full Text] [Related]
11. Accounting for technical noise in differential expression analysis of single-cell RNA sequencing data. Jia C; Hu Y; Kelly D; Kim J; Li M; Zhang NR Nucleic Acids Res; 2017 Nov; 45(19):10978-10988. PubMed ID: 29036714 [TBL] [Abstract][Full Text] [Related]
12. Computational identification of surface markers for isolating distinct subpopulations from heterogeneous cancer cell populations. Gardner AL; Jost TA; Morgan D; Brock A NPJ Syst Biol Appl; 2024 Oct; 10(1):120. PubMed ID: 39420005 [TBL] [Abstract][Full Text] [Related]
13. Single-cell sequencing reveals dissociation-induced gene expression in tissue subpopulations. van den Brink SC; Sage F; Vértesy Á; Spanjaard B; Peterson-Maduro J; Baron CS; Robin C; van Oudenaarden A Nat Methods; 2017 Sep; 14(10):935-936. PubMed ID: 28960196 [No Abstract] [Full Text] [Related]
14. Identification of Cell Types from Single-Cell Transcriptomic Data. Shekhar K; Menon V Methods Mol Biol; 2019; 1935():45-77. PubMed ID: 30758819 [TBL] [Abstract][Full Text] [Related]
15. A Bioinformatic Toolkit for Single-Cell mRNA Analysis. Baßler K; Günther P; Schulte-Schrepping J; Becker M; Biernat P Methods Mol Biol; 2019; 1979():433-455. PubMed ID: 31028653 [TBL] [Abstract][Full Text] [Related]
16. Detection of differentially expressed genes in discrete single-cell RNA sequencing data using a hurdle model with correlated random effects. Sekula M; Gaskins J; Datta S Biometrics; 2019 Dec; 75(4):1051-1062. PubMed ID: 31009065 [TBL] [Abstract][Full Text] [Related]
17. Evaluating measures of association for single-cell transcriptomics. Skinnider MA; Squair JW; Foster LJ Nat Methods; 2019 May; 16(5):381-386. PubMed ID: 30962620 [TBL] [Abstract][Full Text] [Related]