These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

225 related articles for article (PubMed ID: 32926367)

  • 1. Investigating Inter- and Intrasample Diversity of Single-Cell RNA Sequencing Datasets.
    Ferrall-Fairbanks MC; Altrock PM
    Methods Mol Biol; 2021; 2194():177-186. PubMed ID: 32926367
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Statistical and Bioinformatics Analysis of Data from Bulk and Single-Cell RNA Sequencing Experiments.
    Yu X; Abbas-Aghababazadeh F; Chen YA; Fridley BL
    Methods Mol Biol; 2021; 2194():143-175. PubMed ID: 32926366
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Single-Cell Transcriptomic Analysis of Tumor Heterogeneity.
    Levitin HM; Yuan J; Sims PA
    Trends Cancer; 2018 Apr; 4(4):264-268. PubMed ID: 29606308
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Single-cell RNA sequencing and bioinformatics as tools to decipher cancer heterogenicity and mechanisms of drug resistance.
    Rosati D; Giordano A
    Biochem Pharmacol; 2022 Jan; 195():114811. PubMed ID: 34673017
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Millefy: visualizing cell-to-cell heterogeneity in read coverage of single-cell RNA sequencing datasets.
    Ozaki H; Hayashi T; Umeda M; Nikaido I
    BMC Genomics; 2020 Mar; 21(1):177. PubMed ID: 32122302
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cell-level metadata are indispensable for documenting single-cell sequencing datasets.
    Puntambekar S; Hesselberth JR; Riemondy KA; Fu R
    PLoS Biol; 2021 May; 19(5):e3001077. PubMed ID: 33945522
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cancer cell states: Lessons from ten years of single-cell RNA-sequencing of human tumors.
    Tirosh I; Suva ML
    Cancer Cell; 2024 Sep; 42(9):1497-1506. PubMed ID: 39214095
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Single-cell transcriptomics in cancer: computational challenges and opportunities.
    Fan J; Slowikowski K; Zhang F
    Exp Mol Med; 2020 Sep; 52(9):1452-1465. PubMed ID: 32929226
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Data Analysis in Single-Cell Transcriptome Sequencing.
    Gao S
    Methods Mol Biol; 2018; 1754():311-326. PubMed ID: 29536451
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Single-Cell Transcriptome Profiling.
    Shapira G; Shomron N
    Methods Mol Biol; 2021; 2243():311-325. PubMed ID: 33606265
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Accounting for technical noise in differential expression analysis of single-cell RNA sequencing data.
    Jia C; Hu Y; Kelly D; Kim J; Li M; Zhang NR
    Nucleic Acids Res; 2017 Nov; 45(19):10978-10988. PubMed ID: 29036714
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Computational identification of surface markers for isolating distinct subpopulations from heterogeneous cancer cell populations.
    Gardner AL; Jost TA; Morgan D; Brock A
    NPJ Syst Biol Appl; 2024 Oct; 10(1):120. PubMed ID: 39420005
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Single-cell sequencing reveals dissociation-induced gene expression in tissue subpopulations.
    van den Brink SC; Sage F; Vértesy Á; Spanjaard B; Peterson-Maduro J; Baron CS; Robin C; van Oudenaarden A
    Nat Methods; 2017 Sep; 14(10):935-936. PubMed ID: 28960196
    [No Abstract]   [Full Text] [Related]  

  • 14. Identification of Cell Types from Single-Cell Transcriptomic Data.
    Shekhar K; Menon V
    Methods Mol Biol; 2019; 1935():45-77. PubMed ID: 30758819
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Bioinformatic Toolkit for Single-Cell mRNA Analysis.
    Baßler K; Günther P; Schulte-Schrepping J; Becker M; Biernat P
    Methods Mol Biol; 2019; 1979():433-455. PubMed ID: 31028653
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Detection of differentially expressed genes in discrete single-cell RNA sequencing data using a hurdle model with correlated random effects.
    Sekula M; Gaskins J; Datta S
    Biometrics; 2019 Dec; 75(4):1051-1062. PubMed ID: 31009065
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evaluating measures of association for single-cell transcriptomics.
    Skinnider MA; Squair JW; Foster LJ
    Nat Methods; 2019 May; 16(5):381-386. PubMed ID: 30962620
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mapping heterogeneity in patient-derived melanoma cultures by single-cell RNA-seq.
    Gerber T; Willscher E; Loeffler-Wirth H; Hopp L; Schadendorf D; Schartl M; Anderegg U; Camp G; Treutlein B; Binder H; Kunz M
    Oncotarget; 2017 Jan; 8(1):846-862. PubMed ID: 27903987
    [TBL] [Abstract][Full Text] [Related]  

  • 19. LEAP: constructing gene co-expression networks for single-cell RNA-sequencing data using pseudotime ordering.
    Specht AT; Li J
    Bioinformatics; 2017 Mar; 33(5):764-766. PubMed ID: 27993778
    [TBL] [Abstract][Full Text] [Related]  

  • 20. scMRMA: single cell multiresolution marker-based annotation.
    Li J; Sheng Q; Shyr Y; Liu Q
    Nucleic Acids Res; 2022 Jan; 50(2):e7. PubMed ID: 34648021
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.