BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 32926437)

  • 1. Bursting mitral cells time the oscillatory coupling between olfactory bulb and entorhinal networks in neonatal mice.
    Kostka JK; Gretenkord S; Spehr M; Hanganu-Opatz IL
    J Physiol; 2020 Dec; 598(24):5753-5769. PubMed ID: 32926437
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Coordinated electrical activity in the olfactory bulb gates the oscillatory entrainment of entorhinal networks in neonatal mice.
    Gretenkord S; Kostka JK; Hartung H; Watznauer K; Fleck D; Minier-Toribio A; Spehr M; Hanganu-Opatz IL
    PLoS Biol; 2019 Jan; 17(1):e2006994. PubMed ID: 30703080
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Olfactory-driven beta band entrainment of limbic circuitry during neonatal development.
    Kostka JK; Hanganu-Opatz IL
    J Physiol; 2023 Aug; 601(16):3605-3630. PubMed ID: 37434507
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Olfactory bulb activity shapes the development of entorhinal-hippocampal coupling and associated cognitive abilities.
    Chen YN; Kostka JK; Bitzenhofer SH; Hanganu-Opatz IL
    Curr Biol; 2023 Oct; 33(20):4353-4366.e5. PubMed ID: 37729915
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Olfactory-auditory sensory integration in the lateral entorhinal cortex.
    Wu T; Li S; Du D; Li R; Liu P; Yin Z; Zhang H; Qiao Y; Li A
    Prog Neurobiol; 2023 Feb; 221():102399. PubMed ID: 36581184
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Thalamic and Entorhinal Network Activity Differently Modulates the Functional Development of Prefrontal-Hippocampal Interactions.
    Hartung H; Brockmann MD; Pöschel B; De Feo V; Hanganu-Opatz IL
    J Neurosci; 2016 Mar; 36(13):3676-90. PubMed ID: 27030754
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Correlated firing in tufted cells of mouse olfactory bulb.
    Ma J; Lowe G
    Neuroscience; 2010 Sep; 169(4):1715-38. PubMed ID: 20600657
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Role of intraglomerular circuits in shaping temporally structured responses to naturalistic inhalation-driven sensory input to the olfactory bulb.
    Carey RM; Sherwood WE; Shipley MT; Borisyuk A; Wachowiak M
    J Neurophysiol; 2015 May; 113(9):3112-29. PubMed ID: 25717156
    [TBL] [Abstract][Full Text] [Related]  

  • 9. GABAB Receptors Tune Cortical Feedback to the Olfactory Bulb.
    Mazo C; Lepousez G; Nissant A; Valley MT; Lledo PM
    J Neurosci; 2016 Aug; 36(32):8289-304. PubMed ID: 27511004
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Postnatal Odor Exposure Increases the Strength of Interglomerular Lateral Inhibition onto Olfactory Bulb Tufted Cells.
    Geramita M; Urban NN
    J Neurosci; 2016 Dec; 36(49):12321-12327. PubMed ID: 27927952
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Olfactory bulb glomeruli: external tufted cells intrinsically burst at theta frequency and are entrained by patterned olfactory input.
    Hayar A; Karnup S; Shipley MT; Ennis M
    J Neurosci; 2004 Feb; 24(5):1190-9. PubMed ID: 14762137
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electrophysiology of interneurons in the glomerular layer of the rat olfactory bulb.
    McQuiston AR; Katz LC
    J Neurophysiol; 2001 Oct; 86(4):1899-907. PubMed ID: 11600649
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Subtype of Olfactory Bulb Interneurons Is Required for Odor Detection and Discrimination Behaviors.
    Takahashi H; Ogawa Y; Yoshihara S; Asahina R; Kinoshita M; Kitano T; Kitsuki M; Tatsumi K; Okuda M; Tatsumi K; Wanaka A; Hirai H; Stern PL; Tsuboi A
    J Neurosci; 2016 Aug; 36(31):8210-27. PubMed ID: 27488640
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The Interglomerular Circuit Potently Inhibits Olfactory Bulb Output Neurons by Both Direct and Indirect Pathways.
    Liu S; Puche AC; Shipley MT
    J Neurosci; 2016 Sep; 36(37):9604-17. PubMed ID: 27629712
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sniff rhythm-paced fast and slow gamma-oscillations in the olfactory bulb: relation to tufted and mitral cells and behavioral states.
    Manabe H; Mori K
    J Neurophysiol; 2013 Oct; 110(7):1593-9. PubMed ID: 23864376
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Antidromic and orthodromic responses by subicular neurons in rat brain slices.
    Stewart M
    Brain Res; 1997 Sep; 769(1):71-85. PubMed ID: 9374275
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Inhalation Frequency Controls Reformatting of Mitral/Tufted Cell Odor Representations in the Olfactory Bulb.
    Díaz-Quesada M; Youngstrom IA; Tsuno Y; Hansen KR; Economo MN; Wachowiak M
    J Neurosci; 2018 Feb; 38(9):2189-2206. PubMed ID: 29374137
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Spatially segregated feedforward and feedback neurons support differential odor processing in the lateral entorhinal cortex.
    Leitner FC; Melzer S; Lütcke H; Pinna R; Seeburg PH; Helmchen F; Monyer H
    Nat Neurosci; 2016 Jul; 19(7):935-44. PubMed ID: 27182817
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Olfactory deficit is associated with mitral cell dysfunction in the olfactory bulb of P301S tau transgenic mice.
    Li S; Li W; Wu X; Li J; Yang J; Tu C; Ye X; Ling S
    Brain Res Bull; 2019 May; 148():34-45. PubMed ID: 30902575
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Postnatal development attunes olfactory bulb mitral cells to high-frequency signaling.
    Yu Y; Burton SD; Tripathy SJ; Urban NN
    J Neurophysiol; 2015 Nov; 114(5):2830-42. PubMed ID: 26354312
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.