These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 32926437)

  • 21. Cell-Type-Specific Modulation of Sensory Responses in Olfactory Bulb Circuits by Serotonergic Projections from the Raphe Nuclei.
    Brunert D; Tsuno Y; Rothermel M; Shipley MT; Wachowiak M
    J Neurosci; 2016 Jun; 36(25):6820-35. PubMed ID: 27335411
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Postnatal Development of Centrifugal Inputs to the Olfactory Bulb.
    Kostka JK; Bitzenhofer SH
    Front Neurosci; 2022; 16():815282. PubMed ID: 35281496
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Intraglomerular gap junctions enhance interglomerular synchrony in a sparsely connected olfactory bulb network.
    Pouille F; McTavish TS; Hunter LE; Restrepo D; Schoppa NE
    J Physiol; 2017 Sep; 595(17):5965-5986. PubMed ID: 28640508
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Task Learning Promotes Plasticity of Interneuron Connectivity Maps in the Olfactory Bulb.
    Huang L; Ung K; Garcia I; Quast KB; Cordiner K; Saggau P; Arenkiel BR
    J Neurosci; 2016 Aug; 36(34):8856-71. PubMed ID: 27559168
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Multiplexing using synchrony in the zebrafish olfactory bulb.
    Friedrich RW; Habermann CJ; Laurent G
    Nat Neurosci; 2004 Aug; 7(8):862-71. PubMed ID: 15273692
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Olfactory inputs activate the medial entorhinal cortex via the hippocampus.
    Biella G; de Curtis M
    J Neurophysiol; 2000 Apr; 83(4):1924-31. PubMed ID: 10758103
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Spike Afterpotentials Shape the
    Csordás DÉ; Fischer C; Nagele J; Stemmler M; Herz AVM
    J Neurosci; 2020 Jun; 40(23):4512-4524. PubMed ID: 32332120
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Synchronous Infra-Slow Bursting in the Mouse Accessory Olfactory Bulb Emerge from Interplay between Intrinsic Neuronal Dynamics and Network Connectivity.
    Zylbertal A; Yarom Y; Wagner S
    J Neurosci; 2017 Mar; 37(10):2656-2672. PubMed ID: 28148726
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Intraglomerular lateral inhibition promotes spike timing variability in principal neurons of the olfactory bulb.
    Najac M; Sanz Diez A; Kumar A; Benito N; Charpak S; De Saint Jan D
    J Neurosci; 2015 Mar; 35(10):4319-31. PubMed ID: 25762678
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Respiratory modulation of spontaneous subthreshold synaptic activity in olfactory bulb granule cells recorded in awake, head-fixed mice.
    Youngstrom IA; Strowbridge BW
    J Neurosci; 2015 Jun; 35(23):8758-67. PubMed ID: 26063910
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Circuit dynamics of the olfactory pathway during olfactory learning.
    Zhang YJ; Lee JY; Igarashi KM
    Front Neural Circuits; 2024; 18():1437575. PubMed ID: 39036422
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Biophysical constraints on lateral inhibition in the olfactory bulb.
    McIntyre AB; Cleland TA
    J Neurophysiol; 2016 Jun; 115(6):2937-49. PubMed ID: 27009162
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Functional transformations of odor inputs in the mouse olfactory bulb.
    Adam Y; Livneh Y; Miyamichi K; Groysman M; Luo L; Mizrahi A
    Front Neural Circuits; 2014; 8():129. PubMed ID: 25408637
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Spatial patterns of olfactory bulb single-unit responses to learned olfactory cues in young rats.
    Wilson DA; Leon M
    J Neurophysiol; 1988 Jun; 59(6):1770-82. PubMed ID: 3404204
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Synchronous Infra-Slow Oscillations Organize Ensembles of Accessory Olfactory Bulb Projection Neurons into Distinct Microcircuits.
    Tsitoura C; Malinowski ST; Mohrhardt J; Degen R; DiBenedictis BT; Gao Y; Watznauer K; Gerhold K; Nagel M; Weber M; Rothermel M; Hanganu-Opatz IL; Ben-Shaul Y; Davison IG; Spehr M
    J Neurosci; 2020 May; 40(21):4203-4218. PubMed ID: 32312886
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Excitatory Postrhinal Projections to Principal Cells in the Medial Entorhinal Cortex.
    Koganezawa N; Gisetstad R; Husby E; Doan TP; Witter MP
    J Neurosci; 2015 Dec; 35(48):15860-74. PubMed ID: 26631468
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Rhythmically discharging basal forebrain units comprise cholinergic, GABAergic, and putative glutamatergic cells.
    Manns ID; Alonso A; Jones BE
    J Neurophysiol; 2003 Feb; 89(2):1057-66. PubMed ID: 12574480
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Differential serotonergic modulation across the main and accessory olfactory bulbs.
    Huang Z; Thiebaud N; Fadool DA
    J Physiol; 2017 Jun; 595(11):3515-3533. PubMed ID: 28229459
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Oscillatory activity in developing prefrontal networks results from theta-gamma-modulated synaptic inputs.
    Bitzenhofer SH; Sieben K; Siebert KD; Spehr M; Hanganu-Opatz IL
    Cell Rep; 2015 Apr; 11(3):486-97. PubMed ID: 25865885
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Circuit properties generating gamma oscillations in a network model of the olfactory bulb.
    Bathellier B; Lagier S; Faure P; Lledo PM
    J Neurophysiol; 2006 Apr; 95(4):2678-91. PubMed ID: 16381804
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.