These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

98 related articles for article (PubMed ID: 32926437)

  • 61. Afterhyperpolarization Promotes the Firing of Mitral Cells through a Voltage-Dependent Modification of Action Potential Threshold.
    Fourcaud-Trocmé N; Zbili M; Duchamp-Viret P; Kuczewski N
    eNeuro; 2022; 9(2):. PubMed ID: 35277450
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Intrinsic properties and evoked responses of guinea pig subicular neurons in vitro.
    Stewart M; Wong RK
    J Neurophysiol; 1993 Jul; 70(1):232-45. PubMed ID: 8395577
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Orexin A effects on the olfactory bulb spontaneous activity and odor responsiveness in freely breathing rats.
    Apelbaum AF; Perrut A; Chaput M
    Regul Pept; 2005 Jul; 129(1-3):49-61. PubMed ID: 15927698
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Spatial Structure of Synchronized Inhibition in the Olfactory Bulb.
    Arnson HA; Strowbridge BW
    J Neurosci; 2017 Oct; 37(43):10468-10480. PubMed ID: 28947574
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Calcium signaling in mitral cell dendrites of olfactory bulbs of neonatal rats and mice during olfactory nerve Stimulation and beta-adrenoceptor activation.
    Yuan Q; Mutoh H; Debarbieux F; Knöpfel T
    Learn Mem; 2004; 11(4):406-11. PubMed ID: 15286182
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Task-Demand-Dependent Neural Representation of Odor Information in the Olfactory Bulb and Posterior Piriform Cortex.
    Wang D; Liu P; Mao X; Zhou Z; Cao T; Xu J; Sun C; Li A
    J Neurosci; 2019 Dec; 39(50):10002-10018. PubMed ID: 31672791
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Dopamine Suppresses Synaptic Responses of Fan Cells in the Lateral Entorhinal Cortex to Olfactory Bulb Input in Mice.
    Liu S
    Front Cell Neurosci; 2020; 14():181. PubMed ID: 32625065
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Rapid odor processing by layer 2 subcircuits in lateral entorhinal cortex.
    Bitzenhofer SH; Westeinde EA; Zhang HB; Isaacson JS
    Elife; 2022 Feb; 11():. PubMed ID: 35129439
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Endogenous GABA and glutamate finely tune the bursting of olfactory bulb external tufted cells.
    Hayar A; Ennis M
    J Neurophysiol; 2007 Aug; 98(2):1052-6. PubMed ID: 17567771
    [TBL] [Abstract][Full Text] [Related]  

  • 70. A Pool of Postnatally Generated Interneurons Persists in an Immature Stage in the Olfactory Bulb.
    Benito N; Gaborieau E; Sanz Diez A; Kosar S; Foucault L; Raineteau O; De Saint Jan D
    J Neurosci; 2018 Nov; 38(46):9870-9882. PubMed ID: 30282727
    [TBL] [Abstract][Full Text] [Related]  

  • 71. An arterially perfused nose-olfactory bulb preparation of the rat.
    Pérez de los Cobos Pallarés F; Stanić D; Farmer D; Dutschmann M; Egger V
    J Neurophysiol; 2015 Sep; 114(3):2033-42. PubMed ID: 26108959
    [TBL] [Abstract][Full Text] [Related]  

  • 72. RNA-seq analysis of developing olfactory bulb projection neurons.
    Kawasawa YI; Salzberg AC; Li M; Šestan N; Greer CA; Imamura F
    Mol Cell Neurosci; 2016 Jul; 74():78-86. PubMed ID: 27073125
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Projection cells and interneurons of the lateral and basolateral amygdala: distinct firing patterns and differential relation to theta and delta rhythms in conscious cats.
    Paré D; Gaudreau H
    J Neurosci; 1996 May; 16(10):3334-50. PubMed ID: 8627370
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Centrifugal regulation of neuronal activity in the olfactory bulb of the waking rabbit as revealed by reversible cryogenic blockade.
    Gray CM; Skinner JE
    Exp Brain Res; 1988; 69(2):378-86. PubMed ID: 3345814
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Multiple functions of GABA A and GABA B receptors during pattern processing in the zebrafish olfactory bulb.
    Tabor R; Yaksi E; Friedrich RW
    Eur J Neurosci; 2008 Jul; 28(1):117-27. PubMed ID: 18616562
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Discharge patterning in rat olfactory bulb mitral cells in vivo.
    Leng G; Hashimoto H; Tsuji C; Sabatier N; Ludwig M
    Physiol Rep; 2014 Oct; 2(10):. PubMed ID: 25281614
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Topography in the Bursting Dynamics of Entorhinal Neurons.
    Bant JS; Hardcastle K; Ocko SA; Giocomo LM
    Cell Rep; 2020 Feb; 30(7):2349-2359.e7. PubMed ID: 32075768
    [TBL] [Abstract][Full Text] [Related]  

  • 78. The Effects of Background Noise on a Biophysical Model of Olfactory Bulb Mitral Cells.
    Craft M; Ly C
    Bull Math Biol; 2022 Aug; 84(10):107. PubMed ID: 36008641
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Developmental decrease of entorhinal-hippocampal communication in immune-challenged DISC1 knockdown mice.
    Xu X; Song L; Kringel R; Hanganu-Opatz IL
    Nat Commun; 2021 Nov; 12(1):6810. PubMed ID: 34815409
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Theta phase coding in a network model of the entorhinal cortex layer II with entorhinal-hippocampal loop connections.
    Igarashi J; Hayashi H; Tateno K
    Cogn Neurodyn; 2007 Jun; 1(2):169-84. PubMed ID: 19003510
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.