BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 32926516)

  • 1. Two Spectroscopies in One: Interference of Circular Dichroism and Raman Optical Activity.
    Wu T; Li G; Kapitán J; Kessler J; Xu Y; Bouř P
    Angew Chem Int Ed Engl; 2020 Dec; 59(49):21895-21898. PubMed ID: 32926516
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Chiral recognition
    Machalska E; Hachlica N; Zajac G; Carraro D; Baranska M; Licini G; Bouř P; Zonta C; Kaczor A
    Phys Chem Chem Phys; 2021 Oct; 23(40):23336-23340. PubMed ID: 34633399
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Recent Trends in Chiroptical Spectroscopy: Theory and Applications of Vibrational Circular Dichroism and Raman Optical Activity.
    Krupová M; Kessler J; Bouř P
    Chempluschem; 2020 Mar; 85(3):561-575. PubMed ID: 32187832
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electronic Circular Dichroism-Circularly Polarized Raman (eCP-Raman): A New Form of Chiral Raman Spectroscopy.
    Li G; Alshalalfeh M; Kapitán J; Bouř P; Xu Y
    Chemistry; 2022 Apr; 28(20):e202104302. PubMed ID: 35030280
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Molecular Properties of 3d and 4f Coordination Compounds Deciphered by Raman Optical Activity Spectroscopy.
    Wu T; Pelc R; Bouř P
    Chempluschem; 2023 Sep; 88(9):e202300385. PubMed ID: 37665573
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparison of the electronic and vibrational optical activity of a europium(III) complex.
    Wu T; Hudecová J; You XZ; Urbanová M; Bouř P
    Chemistry; 2015 Apr; 21(15):5807-13. PubMed ID: 25736965
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Transfer and Amplification of Chirality Within the "Ring of Fire" Observed in Resonance Raman Optical Activity Experiments.
    Li G; Kessler J; Cheramy J; Wu T; Poopari MR; Bouř P; Xu Y
    Angew Chem Int Ed Engl; 2019 Nov; 58(46):16495-16498. PubMed ID: 31460686
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Recognition of the True and False Resonance Raman Optical Activity.
    Machalska E; Zajac G; Wierzba AJ; Kapitán J; Andruniów T; Spiegel M; Gryko D; Bouř P; Baranska M
    Angew Chem Int Ed Engl; 2021 Sep; 60(39):21205-21210. PubMed ID: 34216087
    [TBL] [Abstract][Full Text] [Related]  

  • 9. On Raman optical activity sign-switching between the ground and excited states leading to an unusual resonance ROA induced chirality.
    Machalska E; Zajac G; Baranska M; Kaczorek D; Kawęcki R; Lipiński PFJ; Rode JE; Dobrowolski JC
    Chem Sci; 2020 Nov; 12(3):911-916. PubMed ID: 34163857
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The Clusters-in-a-Liquid Approach for Solvation: New Insights from the Conformer Specific Gas Phase Spectroscopy and Vibrational Optical Activity Spectroscopy.
    Perera AS; Thomas J; Poopari MR; Xu Y
    Front Chem; 2016; 4():9. PubMed ID: 26942177
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Chirality transfer observed in Raman optical activity spectra.
    Machalska E; Zając G; Rode JE
    Spectrochim Acta A Mol Biomol Spectrosc; 2022 Nov; 281():121604. PubMed ID: 35835058
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparison of experimental and calculated chiroptical spectra for chiral molecular structure determination.
    Polavarapu PL; Covington CL
    Chirality; 2014 Sep; 26(9):539-52. PubMed ID: 24644231
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Determining the absolute configuration of two marine compounds using vibrational chiroptical spectroscopy.
    Hopmann KH; Šebestík J; Novotná J; Stensen W; Urbanová M; Svenson J; Svendsen JS; Bouř P; Ruud K
    J Org Chem; 2012 Jan; 77(2):858-69. PubMed ID: 22148737
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Vibrational optical activity: From discovery and development to future challenges.
    Nafie LA
    Chirality; 2020 May; 32(5):667-692. PubMed ID: 32084296
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Chiral Spectroscopy of Nanostructures.
    Kwon J; Park KH; Choi WJ; Kotov NA; Yeom J
    Acc Chem Res; 2023 Jun; 56(12):1359-1372. PubMed ID: 37256726
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Optical signatures of molecular dissymmetry: combining theory with experiments to address stereochemical puzzles.
    Mukhopadhyay P; Wipf P; Beratan DN
    Acc Chem Res; 2009 Jun; 42(6):809-19. PubMed ID: 19378940
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Circular Polarization-Resolved Raman Optical Activity: A Perspective on Chiral Spectroscopies of Vibrational States.
    Er E; Chow TH; Liz-Marzán LM; Kotov NA
    ACS Nano; 2024 May; 18(20):12589-12597. PubMed ID: 38709673
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Three types of induced tryptophan optical activity compared in model dipeptides: theory and experiment.
    Hudecová J; Horníček J; Buděšínský M; Šebestík J; Šafařík M; Zhang G; Keiderling TA; Bouř P
    Chemphyschem; 2012 Aug; 13(11):2748-60. PubMed ID: 22706803
    [TBL] [Abstract][Full Text] [Related]  

  • 19. To Avoid Chasing Incorrect Chemical Structures of Chiral Compounds: Raman Optical Activity and Vibrational Circular Dichroism Spectroscopies.
    Polavarapu PL; Covington CL; Raghavan V
    Chemphyschem; 2017 Sep; 18(18):2459-2465. PubMed ID: 28700810
    [TBL] [Abstract][Full Text] [Related]  

  • 20. New chiral ECD-Raman spectroscopy of atropisomeric naphthalenediimides.
    Machalska E; Zając G; Baranska M; Bouř P; Kaczorek D; Kawęcki R; Rode JE; Lyczko K; Dobrowolski JC
    Chem Commun (Camb); 2022 Apr; 58(28):4524-4527. PubMed ID: 35302568
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.