BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

339 related articles for article (PubMed ID: 32926553)

  • 1. Role of epigenetics and miRNAs in orofacial clefts.
    Garland MA; Sun B; Zhang S; Reynolds K; Ji Y; Zhou CJ
    Birth Defects Res; 2020 Nov; 112(19):1635-1659. PubMed ID: 32926553
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Distinct DNA methylation profiles in subtypes of orofacial cleft.
    Sharp GC; Ho K; Davies A; Stergiakouli E; Humphries K; McArdle W; Sandy J; Davey Smith G; Lewis SJ; Relton CL
    Clin Epigenetics; 2017; 9():63. PubMed ID: 28603561
    [TBL] [Abstract][Full Text] [Related]  

  • 3. MicroRNAs as epigenetic regulators of orofacial development.
    Seelan RS; Pisano MM; Greene RM
    Differentiation; 2022; 124():1-16. PubMed ID: 35144134
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A comparison of DNA methylation in newborn blood samples from infants with and without orofacial clefts.
    Xu Z; Lie RT; Wilcox AJ; Saugstad OD; Taylor JA
    Clin Epigenetics; 2019 Mar; 11(1):40. PubMed ID: 30832715
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Integrated assessment of differentially expressed plasma microRNAs in subtypes of nonsyndromic orofacial clefts.
    Wu N; Yan J; Han T; Zou J; Shen W
    Medicine (Baltimore); 2018 Jun; 97(25):e11224. PubMed ID: 29924053
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Epigenetic implications in maternal diabetes and metabolic syndrome-associated risk of orofacial clefts.
    Sun B; Reynolds KS; Garland MA; McMahon M; Saha SK; Zhou CJ
    Birth Defects Res; 2023 Nov; 115(19):1835-1850. PubMed ID: 37497595
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Developmental epigenetics of the murine secondary palate.
    Seelan RS; Mukhopadhyay P; Pisano MM; Greene RM
    ILAR J; 2012; 53(3-4):240-52. PubMed ID: 23744964
    [TBL] [Abstract][Full Text] [Related]  

  • 8. miRNAs as biomarkers of orofacial clefts: A systematic review.
    Mendes SMDA; Espinosa DDSG; Moreira PEO; Marques D; Fagundes NCF; Ribeiro-Dos-Santos Â
    J Oral Pathol Med; 2020 Mar; 49(3):201-209. PubMed ID: 31479540
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Disruption of DNA methylation-mediated cranial neural crest proliferation and differentiation causes orofacial clefts in mice.
    Ulschmid CM; Sun MR; Jabbarpour CR; Steward AC; Rivera-González KS; Cao J; Martin AA; Barnes M; Wicklund L; Madrid A; Papale LA; Joseph DB; Vezina CM; Alisch RS; Lipinski RJ
    Proc Natl Acad Sci U S A; 2024 Jan; 121(3):e2317668121. PubMed ID: 38194455
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Epigenetics and Orofacial Clefts: A Brief Introduction.
    Sharp GC; Stergiakouli E; Sandy J; Relton C
    Cleft Palate Craniofac J; 2018 Jul; 55(6):795-797. PubMed ID: 28085511
    [No Abstract]   [Full Text] [Related]  

  • 11. The evolution of human genetic studies of cleft lip and cleft palate.
    Marazita ML
    Annu Rev Genomics Hum Genet; 2012; 13():263-83. PubMed ID: 22703175
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Pleiotropy method reveals genetic overlap between orofacial clefts at multiple novel loci from GWAS of multi-ethnic trios.
    Ray D; Venkataraghavan S; Zhang W; Leslie EJ; Hetmanski JB; Weinberg SM; Murray JC; Marazita ML; Ruczinski I; Taub MA; Beaty TH
    PLoS Genet; 2021 Jul; 17(7):e1009584. PubMed ID: 34242216
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Alterations in DNA Methylation in Orofacial Clefts.
    Charoenvicha C; Sirimaharaj W; Khwanngern K; Chattipakorn N; Chattipakorn SC
    Int J Mol Sci; 2022 Oct; 23(21):. PubMed ID: 36361518
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Role of lncRNAs and circRNAs in Orofacial Clefts.
    Seelan RS; Greene RM; Pisano MM
    Microrna; 2023; 12(3):171-176. PubMed ID: 38009000
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A systematic genetic analysis and visualization of phenotypic heterogeneity among orofacial cleft GWAS signals.
    Carlson JC; Anand D; Butali A; Buxo CJ; Christensen K; Deleyiannis F; Hecht JT; Moreno LM; Orioli IM; Padilla C; Shaffer JR; Vieira AR; Wehby GL; Weinberg SM; Murray JC; Beaty TH; Saadi I; Lachke SA; Marazita ML; Feingold E; Leslie EJ
    Genet Epidemiol; 2019 Sep; 43(6):704-716. PubMed ID: 31172578
    [TBL] [Abstract][Full Text] [Related]  

  • 16. MicroRNAs and Gene Regulatory Networks Related to Cleft Lip and Palate.
    Iwaya C; Suzuki A; Iwata J
    Int J Mol Sci; 2023 Feb; 24(4):. PubMed ID: 36834963
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comprehensive analysis of differentially expressed profiles of non‑coding RNAs in peripheral blood and ceRNA regulatory networks in non‑syndromic orofacial clefts.
    Gao Y; Zang Q; Song H; Fu S; Sun W; Zhang W; Wang X; Li Y; Jiao X
    Mol Med Rep; 2019 Jul; 20(1):513-528. PubMed ID: 31115538
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Zebrafish models of orofacial clefts.
    Duncan KM; Mukherjee K; Cornell RA; Liao EC
    Dev Dyn; 2017 Nov; 246(11):897-914. PubMed ID: 28795449
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The Role of Noncoding Genetic Variation in Isolated Orofacial Clefts.
    Thieme F; Ludwig KU
    J Dent Res; 2017 Oct; 96(11):1238-1247. PubMed ID: 28732180
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Whole-genome sequencing in a pair of monozygotic twins with discordant cleft lip and palate subtypes.
    Takahashi M; Hosomichi K; Yamaguchi T; Nagahama R; Yoshida H; Maki K; Marazita ML; Weinberg SM; Tajima A
    Oral Dis; 2018 Oct; 24(7):1303-1309. PubMed ID: 29873870
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.