These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
190 related articles for article (PubMed ID: 32926790)
1. Navigation Along Windborne Plumes of Pheromone and Resource-Linked Odors. Cardé RT Annu Rev Entomol; 2021 Jan; 66():317-336. PubMed ID: 32926790 [TBL] [Abstract][Full Text] [Related]
2. Modeling Optimal Strategies for Finding a Resource-Linked, Windborne Odor Plume: Theories, Robotics, and Biomimetic Lessons from Flying Insects. Bau J; Cardé RT Integr Comp Biol; 2015 Sep; 55(3):461-77. PubMed ID: 25980569 [TBL] [Abstract][Full Text] [Related]
3. Walking Demir M; Kadakia N; Anderson HD; Clark DA; Emonet T Elife; 2020 Nov; 9():. PubMed ID: 33140723 [TBL] [Abstract][Full Text] [Related]
4. Moth-inspired navigation algorithm in a turbulent odor plume from a pulsating source. Liberzon A; Harrington K; Daniel N; Gurka R; Harari A; Zilman G PLoS One; 2018; 13(6):e0198422. PubMed ID: 29897978 [TBL] [Abstract][Full Text] [Related]
5. Odour plumes and odour-mediated flight in insects. Cardé RT Ciba Found Symp; 1996; 200():54-66; discussion 66-70. PubMed ID: 8894290 [TBL] [Abstract][Full Text] [Related]
6. A comparison of odor plume-tracking behavior of walking and flying insects in different turbulent environments. Talley JL; White EB; Willis MA J Exp Biol; 2023 Jan; 226(2):. PubMed ID: 36354120 [TBL] [Abstract][Full Text] [Related]
7. Navigational strategies used by insects to find distant, wind-borne sources of odor. Cardé RT; Willis MA J Chem Ecol; 2008 Jul; 34(7):854-66. PubMed ID: 18581182 [TBL] [Abstract][Full Text] [Related]
8. Effects of altering flow and odor information on plume tracking behavior in walking cockroaches, Periplaneta americana (L.). Willis MA; Avondet JL; Finnell AS J Exp Biol; 2008 Jul; 211(Pt 14):2317-26. PubMed ID: 18587126 [TBL] [Abstract][Full Text] [Related]
9. The role of vision in odor-plume tracking by walking and flying insects. Willis MA; Avondet JL; Zheng E J Exp Biol; 2011 Dec; 214(Pt 24):4121-32. PubMed ID: 22116754 [TBL] [Abstract][Full Text] [Related]
10. Spatial memory-based behaviors for locating sources of odor plumes. Grünbaum D; Willis MA Mov Ecol; 2015; 3(1):11. PubMed ID: 25960875 [TBL] [Abstract][Full Text] [Related]
11. Odor tracking flight of male Manduca sexta moths along plumes of different cross-sectional area. Willis MA; Ford EA; Avondet JL J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2013 Nov; 199(11):1015-36. PubMed ID: 24081678 [TBL] [Abstract][Full Text] [Related]
12. Attraction modulated by spacing of pheromone components and anti-attractants in a bark beetle and a moth. Andersson MN; Binyameen M; Sadek MM; Schlyter F J Chem Ecol; 2011 Aug; 37(8):899-911. PubMed ID: 21750948 [TBL] [Abstract][Full Text] [Related]
13. Odor-modulated orientation in walking male cockroaches Periplaneta americana, and the effects of odor plumes of different structure. Willis MA; Avondet JL J Exp Biol; 2005 Feb; 208(Pt 4):721-35. PubMed ID: 15695764 [TBL] [Abstract][Full Text] [Related]
14. Analysis and manipulation of the structure of odor plumes from a piezo-electric release system and measurements of upwind flight of male almond moths, Cadra cautella, to pheromone plumes. Girling RD; Cardé RT J Chem Ecol; 2007 Oct; 33(10):1927-45. PubMed ID: 17828430 [TBL] [Abstract][Full Text] [Related]