These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 32927049)

  • 1. Preferential use of plant glycans for growth by Bacteroides ovatus.
    Centanni M; Bell TJ; Sims IM; Tannock GW
    Anaerobe; 2020 Dec; 66():102276. PubMed ID: 32927049
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reciprocal Prioritization to Dietary Glycans by Gut Bacteria in a Competitive Environment Promotes Stable Coexistence.
    Tuncil YE; Xiao Y; Porter NT; Reuhs BL; Martens EC; Hamaker BR
    mBio; 2017 Oct; 8(5):. PubMed ID: 29018117
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Recognition and degradation of plant cell wall polysaccharides by two human gut symbionts.
    Martens EC; Lowe EC; Chiang H; Pudlo NA; Wu M; McNulty NP; Abbott DW; Henrissat B; Gilbert HJ; Bolam DN; Gordon JI
    PLoS Biol; 2011 Dec; 9(12):e1001221. PubMed ID: 22205877
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Surface glycan-binding proteins are essential for cereal beta-glucan utilization by the human gut symbiont Bacteroides ovatus.
    Tamura K; Foley MH; Gardill BR; Dejean G; Schnizlein M; Bahr CME; Louise Creagh A; van Petegem F; Koropatkin NM; Brumer H
    Cell Mol Life Sci; 2019 Nov; 76(21):4319-4340. PubMed ID: 31062073
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Cell-Surface GH9 Endo-Glucanase Coordinates with Surface Glycan-Binding Proteins to Mediate Xyloglucan Uptake in the Gut Symbiont Bacteroides ovatus.
    Foley MH; Déjean G; Hemsworth GR; Davies GJ; Brumer H; Koropatkin NM
    J Mol Biol; 2019 Mar; 431(5):981-995. PubMed ID: 30668971
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Glycan utilisation system in Bacteroides and Bifidobacteria and their roles in gut stability and health.
    Singh RP
    Appl Microbiol Biotechnol; 2019 Sep; 103(18):7287-7315. PubMed ID: 31332487
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Symbiotic Human Gut Bacteria with Variable Metabolic Priorities for Host Mucosal Glycans.
    Pudlo NA; Urs K; Kumar SS; German JB; Mills DA; Martens EC
    mBio; 2015 Nov; 6(6):e01282-15. PubMed ID: 26556271
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Utilization of Complex Pectic Polysaccharides from New Zealand Plants (
    Centanni M; Carnachan SM; Bell TJ; Daines AM; Hinkley SFR; Tannock GW; Sims IM
    J Agric Food Chem; 2019 Jul; 67(27):7755-7764. PubMed ID: 31251611
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Substrate Use Prioritization by a Coculture of Five Species of Gut Bacteria Fed Mixtures of Arabinoxylan, Xyloglucan, β-Glucan, and Pectin.
    Liu Y; Heath AL; Galland B; Rehrer N; Drummond L; Wu XY; Bell TJ; Lawley B; Sims IM; Tannock GW
    Appl Environ Microbiol; 2020 Jan; 86(2):. PubMed ID: 31676481
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Navigating the Gut Buffet: Control of Polysaccharide Utilization in Bacteroides spp.
    Schwalm ND; Groisman EA
    Trends Microbiol; 2017 Dec; 25(12):1005-1015. PubMed ID: 28733133
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sulfation of Arabinogalactan Proteins Confers Privileged Nutrient Status to Bacteroides plebeius.
    Munoz-Munoz J; Ndeh D; Fernandez-Julia P; Walton G; Henrissat B; Gilbert HJ
    mBio; 2021 Aug; 12(4):e0136821. PubMed ID: 34340552
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structural basis for nutrient acquisition by dominant members of the human gut microbiota.
    Glenwright AJ; Pothula KR; Bhamidimarri SP; Chorev DS; Baslé A; Firbank SJ; Zheng H; Robinson CV; Winterhalter M; Kleinekathöfer U; Bolam DN; van den Berg B
    Nature; 2017 Jan; 541(7637):407-411. PubMed ID: 28077872
    [TBL] [Abstract][Full Text] [Related]  

  • 13.
    Wong JPH; Chillier N; Fischer-Stettler M; Zeeman SC; Battin TJ; Persat A
    mBio; 2024 Mar; 15(3):e0259923. PubMed ID: 38376161
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Different Substrate Preferences Help Closely Related Bacteria To Coexist in the Gut.
    Louis P
    mBio; 2017 Nov; 8(6):. PubMed ID: 29114031
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterization of Polysaccharides from Feijoa Fruits ( Acca sellowiana Berg.) and Their Utilization as Growth Substrates by Gut Commensal Bacteroides Species.
    Bell TJ; Draper SL; Centanni M; Carnachan SM; Tannock GW; Sims IM
    J Agric Food Chem; 2018 Dec; 66(50):13277-13284. PubMed ID: 30516980
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Distinct protein architectures mediate species-specific beta-glucan binding and metabolism in the human gut microbiota.
    Tamura K; Dejean G; Van Petegem F; Brumer H
    J Biol Chem; 2021; 296():100415. PubMed ID: 33587952
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The Glycolytic Versatility of
    Benítez-Páez A; Gómez Del Pulgar EM; Sanz Y
    Front Cell Infect Microbiol; 2017; 7():383. PubMed ID: 28971068
    [No Abstract]   [Full Text] [Related]  

  • 18. Polysaccharides utilization in human gut bacterium Bacteroides thetaiotaomicron: comparative genomics reconstruction of metabolic and regulatory networks.
    Ravcheev DA; Godzik A; Osterman AL; Rodionov DA
    BMC Genomics; 2013 Dec; 14():873. PubMed ID: 24330590
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Molecular Dissection of Xyloglucan Recognition in a Prominent Human Gut Symbiont.
    Tauzin AS; Kwiatkowski KJ; Orlovsky NI; Smith CJ; Creagh AL; Haynes CA; Wawrzak Z; Brumer H; Koropatkin NM
    mBio; 2016 Apr; 7(2):e02134-15. PubMed ID: 27118585
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dynamic responses of Bacteroides thetaiotaomicron during growth on glycan mixtures.
    Rogers TE; Pudlo NA; Koropatkin NM; Bell JS; Moya Balasch M; Jasker K; Martens EC
    Mol Microbiol; 2013 Jun; 88(5):876-90. PubMed ID: 23646867
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.