BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 32927085)

  • 1. Methods to quantify heat stress in ruminants: Current status and future prospects.
    Wijffels G; Sullivan M; Gaughan J
    Methods; 2021 Feb; 186():3-13. PubMed ID: 32927085
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Prediction models, assessment methodologies and biotechnological tools to quantify heat stress response in ruminant livestock.
    Rashamol VP; Sejian V; Pragna P; Lees AM; Bagath M; Krishnan G; Gaughan JB
    Int J Biometeorol; 2019 Sep; 63(9):1265-1281. PubMed ID: 31129758
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Review: Adaptation of ruminant livestock production systems to climate changes.
    Henry BK; Eckard RJ; Beauchemin KA
    Animal; 2018 Dec; 12(s2):s445-s456. PubMed ID: 30092851
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Methods for assessing heat stress in preweaned dairy calves exposed to chronic heat stress or continuous cooling.
    Dado-Senn B; Ouellet V; Dahl GE; Laporta J
    J Dairy Sci; 2020 Sep; 103(9):8587-8600. PubMed ID: 32600767
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Adaptation to hot climate and strategies to alleviate heat stress in livestock production.
    Renaudeau D; Collin A; Yahav S; de Basilio V; Gourdine JL; Collier RJ
    Animal; 2012 May; 6(5):707-28. PubMed ID: 22558920
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Elevated skin and core temperatures both contribute to reductions in tolerance to a simulated haemorrhagic challenge.
    Pearson J; Lucas RA; Schlader ZJ; Gagnon D; Crandall CG
    Exp Physiol; 2017 Feb; 102(2):255-264. PubMed ID: 27981648
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Differences in body temperature between black-and-white and red-and-white Holstein cows reared on a hot climate using infrared thermography.
    Isola JVV; Menegazzi G; Busanello M; Dos Santos SB; Agner HSS; Sarubbi J
    J Therm Biol; 2020 Dec; 94():102775. PubMed ID: 33292972
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Analysis of the climatic trends and heat stress periods for ruminants rearing in Bangladesh.
    Islam MS; Mondal AK; Auwul MR; Faruk Siddiki SHM; Islam MA
    Vet Anim Sci; 2024 Jun; 24():100359. PubMed ID: 38812585
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Climate change vulnerability of confined livestock systems predicted using bioclimatic indexes in an arid region of México.
    Theusme C; Avendaño-Reyes L; Macías-Cruz U; Correa-Calderón A; García-Cueto RO; Mellado M; Vargas-Villamil L; Vicente-Pérez A
    Sci Total Environ; 2021 Jan; 751():141779. PubMed ID: 32890800
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ruminant Nutrition Symposium: ruminant production and metabolic responses to heat stress.
    Baumgard LH; Rhoads RP
    J Anim Sci; 2012 Jun; 90(6):1855-65. PubMed ID: 22205665
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Genome-wide analysis of the heat stress response in Zebu (Sahiwal) cattle.
    Mehla K; Magotra A; Choudhary J; Singh AK; Mohanty AK; Upadhyay RC; Srinivasan S; Gupta P; Choudhary N; Antony B; Khan F
    Gene; 2014 Jan; 533(2):500-7. PubMed ID: 24080481
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sensing solutions for improving the performance, health and wellbeing of small ruminants.
    Caja G; Castro-Costa A; Salama AAK; Oliver J; Baratta M; Ferrer C; Knight CH
    J Dairy Res; 2020 Aug; 87(S1):34-46. PubMed ID: 33213578
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Heat stress and fetal risk. Environmental limits for exercise and passive heat stress during pregnancy: a systematic review with best evidence synthesis.
    Ravanelli N; Casasola W; English T; Edwards KM; Jay O
    Br J Sports Med; 2019 Jul; 53(13):799-805. PubMed ID: 29496695
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Forecasting the response to global warming in a heat-sensitive species.
    Brivio F; Zurmühl M; Grignolio S; von Hardenberg J; Apollonio M; Ciuti S
    Sci Rep; 2019 Feb; 9(1):3048. PubMed ID: 30816191
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Critical THI thresholds based on the physiological parameters of lactating dairy cows.
    Pinto S; Hoffmann G; Ammon C; Amon T
    J Therm Biol; 2020 Feb; 88():102523. PubMed ID: 32125999
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of heat stress on reproductive efficiency in Holstein dairy cattle in the North African arid region.
    Djelailia H; Bouraoui R; Jemmali B; Najar T
    Reprod Domest Anim; 2020 Sep; 55(9):1250-1257. PubMed ID: 32648982
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Heat stress assessment during intermittent work under different environmental conditions and clothing combinations of effective wet bulb globe temperature (WBGT).
    Seo Y; Powell J; Strauch A; Roberge R; Kenny GP; Kim JH
    J Occup Environ Hyg; 2019 Jul; 16(7):467-476. PubMed ID: 31107182
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Application of microchip and infrared thermography for monitoring body temperature of beef cattle kept on pasture.
    Giro A; Bernardi ACC; Barioni Junior W; Lemes AP; Botta D; Romanello N; Barreto ADN; Garcia AR
    J Therm Biol; 2019 Aug; 84():121-128. PubMed ID: 31466744
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A new heat load index for feedlot cattle.
    Gaughan JB; Mader TL; Holt SM; Lisle A
    J Anim Sci; 2008 Jan; 86(1):226-34. PubMed ID: 17911236
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The effect of chronic, mild heat stress on metabolic changes of nutrition and adaptations in rumen papillae of lactating dairy cows.
    Eslamizad M; Albrecht D; Kuhla B
    J Dairy Sci; 2020 Sep; 103(9):8601-8614. PubMed ID: 32600758
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.