These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

316 related articles for article (PubMed ID: 32927090)

  • 1. X-ray diffraction and in situ pressurization of dentine apatite reveals nanocrystal modulus stiffening upon carbonate removal.
    Forien JB; Uzuhashi J; Ohkubo T; Hono K; Luo L; Schwarcz HP; Deymier AC; Krywka C; Fleck C; Zaslansky P
    Acta Biomater; 2021 Jan; 120():91-103. PubMed ID: 32927090
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In situ compressibility of carbonated hydroxyapatite in tooth dentine measured under hydrostatic pressure by high energy X-ray diffraction.
    Forien JB; Fleck C; Krywka C; Zolotoyabko E; Zaslansky P
    J Mech Behav Biomed Mater; 2015 Oct; 50():171-9. PubMed ID: 26143350
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Carbonate substitution significantly affects the structure and mechanics of carbonated apatites.
    Wingender B; Azuma M; Krywka C; Zaslansky P; Boyle J; Deymier A
    Acta Biomater; 2021 Mar; 122():377-386. PubMed ID: 33444796
    [TBL] [Abstract][Full Text] [Related]  

  • 4. On the amorphous layer in bone mineral and biomimetic apatite: A combined small- and wide-angle X-ray scattering analysis.
    Bertolotti F; Carmona FJ; Dal Sasso G; Ramírez-Rodríguez GB; Delgado-López JM; Pedersen JS; Ferri F; Masciocchi N; Guagliardi A
    Acta Biomater; 2021 Jan; 120():167-180. PubMed ID: 32438109
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Protein-free formation of bone-like apatite: New insights into the key role of carbonation.
    Deymier AC; Nair AK; Depalle B; Qin Z; Arcot K; Drouet C; Yoder CH; Buehler MJ; Thomopoulos S; Genin GM; Pasteris JD
    Biomaterials; 2017 May; 127():75-88. PubMed ID: 28279923
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ultrastructure, morphology and crystal growth of biogenic and synthetic apatites.
    Heywood BR; Sparks NH; Shellis RP; Weiner S; Mann S
    Connect Tissue Res; 1990; 25(2):103-19. PubMed ID: 2175692
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Chitosan/apatite composite beads prepared by in situ generation of apatite or Si-apatite nanocrystals.
    Davidenko N; Carrodeguas RG; Peniche C; Solís Y; Cameron RE
    Acta Biomater; 2010 Feb; 6(2):466-76. PubMed ID: 19632363
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Time-Dependent Elastic Tensor of Cellulose Nanocrystal Probed by Hydrostatic Pressure and Uniaxial Stretching.
    Song G; Lancelon-Pin C; Chen P; Yu J; Zhang J; Su L; Wada M; Kimura T; Nishiyama Y
    J Phys Chem Lett; 2021 Apr; 12(15):3779-3785. PubMed ID: 33856221
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ab initio simulation on the crystal structure and elastic properties of carbonated apatite.
    Ren F; Lu X; Leng Y
    J Mech Behav Biomed Mater; 2013 Oct; 26():59-67. PubMed ID: 23811277
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Crystallographic structure and surface morphology of sintered carbonated apatites.
    Ellies LG; Nelson DG; Featherstone JD
    J Biomed Mater Res; 1988 Jun; 22(6):541-53. PubMed ID: 3410872
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fabrication of hydroxycarbonate apatite coatings with hierarchically porous structures.
    Guo Y; Zhou Y; Jia D
    Acta Biomater; 2008 Mar; 4(2):334-42. PubMed ID: 17897891
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Preparation, analysis, and characterization of carbonated apatites.
    Nelson DG; Featherstone JD
    Calcif Tissue Int; 1982; 34 Suppl 2():S69-81. PubMed ID: 6293677
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mechanochemical-hydrothermal synthesis of carbonated apatite powders at room temperature.
    Suchanek WL; Shuk P; Byrappa K; Riman RE; TenHuisen KS; Janas VF
    Biomaterials; 2002 Feb; 23(3):699-710. PubMed ID: 11771690
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modification of bone-like apatite nanoparticle size and growth kinetics by alizarin red S.
    Ibsen CJ; Birkedal H
    Nanoscale; 2010 Nov; 2(11):2478-86. PubMed ID: 20931127
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Carbonate release from carbonated hydroxyapatite in the wide temperature rage.
    Barinov SM; Rau JV; Cesaro SN; Durisin J; Fadeeva IV; Ferro D; Medvecky L; Trionfetti G
    J Mater Sci Mater Med; 2006 Jul; 17(7):597-604. PubMed ID: 16770543
    [TBL] [Abstract][Full Text] [Related]  

  • 16. EPR properties of synthetic apatites, deorganified dentine, and enamel.
    Kenner GH; Haskell EH; Hayes RB; Baig A; Higuchi WI
    Calcif Tissue Int; 1998 May; 62(5):443-6. PubMed ID: 9541522
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Crystal alignment of carbonated apatite in bone and calcified tendon: results from quantitative texture analysis.
    Wenk HR; Heidelbach F
    Bone; 1999 Apr; 24(4):361-9. PubMed ID: 10221548
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nanocrystal residual strains and density layers enhance failure resistance in the cleithrum bone of evolutionary advanced pike fish.
    Sauer K; Silveira A; Schoeppler V; Rack A; Zizak I; Pacureanu A; Nassif N; Mantouvalou I; de Nolf W; Fleck C; Shahar R; Zaslansky P
    Acta Biomater; 2024 Apr; 179():164-179. PubMed ID: 38513725
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of solution composition on morphological and structural features of carbonated calcium apatites.
    Shimoda S; Aoba T; Moreno EC; Miake Y
    J Dent Res; 1990 Nov; 69(11):1731-40. PubMed ID: 2229611
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Probing carbonate in bone forming minerals on the nanometre scale.
    Kłosowski MM; Friederichs RJ; Nichol R; Antolin N; Carzaniga R; Windl W; Best SM; Shefelbine SJ; McComb DW; Porter AE
    Acta Biomater; 2015 Jul; 20():129-139. PubMed ID: 25848725
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.