These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 32927182)

  • 1. Hydrological connectivity and herbivores control the autochthonous producers of coastal salt marshes.
    Yin S; Bai J; Wang X; Wang X; Zhang G; Jia J; Li X; Liu X
    Mar Pollut Bull; 2020 Nov; 160():111638. PubMed ID: 32927182
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Sea-land hydrological connectivity of coastal wetlands based on water salinity and hydrological structure.].
    Xu JY; Li YF; Qiu CQ; Liu HY; Zhou Y; Song QN; Wu H
    Ying Yong Sheng Tai Xue Bao; 2021 May; 32(5):1643-1652. PubMed ID: 34042358
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Effects of water-salt stresses on seedling growth and activities of antioxidative enzyme of Suaeda salsa in coastal wetlands of the Yellow River Delta].
    Guan B; Yu JB; Lu ZH; Zhang Y; Wang XH
    Huan Jing Ke Xue; 2011 Aug; 32(8):2422-9. PubMed ID: 22619973
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Consumer control and abiotic stresses constrain coastal saltmarsh restoration.
    Liu Z; Fagherazzi S; Ma X; Xie C; Li J; Cui B
    J Environ Manage; 2020 Nov; 274():111110. PubMed ID: 32781361
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Identifying loss threshold and migration trajectory in the management of Suaeda salsa wetland under coastal squeeze.
    Zhong J; Liang C; Zhao Y; Wang Y; Yan X
    Mar Environ Res; 2024 Feb; 194():106329. PubMed ID: 38159408
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Multi-scale analysis of hydrological connectivity and plant response in the Yellow River Delta.
    Liu J; Engel BA; Wang Y; Zhang G; Zhang Z; Zhang M
    Sci Total Environ; 2020 Feb; 702():134889. PubMed ID: 31733556
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Vegetation changes in coastal wetlands of the outer estuary of the Río de la Plata as a result of anthropic-induced hydrological modifications.
    Alí Santoro V; Carol E; Kandus P
    Sci Total Environ; 2023 Mar; 866():161325. PubMed ID: 36603621
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Study on spatio-temporal variation and hydrological connectivity of tidal creek evolution in Yancheng coastal wetlands.
    Zhou S; Wang C; Li Y; Huang W; Jia Y; Wang Y; Xu W; Qiu C; Liu H
    Environ Sci Pollut Res Int; 2023 Mar; 30(13):37143-37156. PubMed ID: 36571689
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Phragmites australis meets Suaeda salsa on the "red beach": Effects of an ecosystem engineer on salt-marsh litter decomposition.
    Cui L; Pan X; Li W; Zhang X; Liu G; Song YB; Yu FH; Prinzing A; Cornelissen JHC
    Sci Total Environ; 2019 Nov; 693():133477. PubMed ID: 31362230
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Herbivory drives the spread of salt marsh die-off.
    Bertness MD; Brisson CP; Bevil MC; Crotty SM
    PLoS One; 2014; 9(3):e92916. PubMed ID: 24651837
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Wintering waterbirds in a large river floodplain: Hydrological connectivity is the key for reconciling development and conservation.
    Xia S; Liu Y; Wang Y; Chen B; Jia Y; Liu G; Yu X; Wen L
    Sci Total Environ; 2016 Dec; 573():645-660. PubMed ID: 27592464
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Field Experiments and Meta-analysis Reveal Wetland Vegetation as a Crucial Element in the Coastal Protection Paradigm.
    Silliman BR; He Q; Angelini C; Smith CS; Kirwan ML; Daleo P; Renzi JJ; Butler J; Osborne TZ; Nifong JC; van de Koppel J
    Curr Biol; 2019 Jun; 29(11):1800-1806.e3. PubMed ID: 31130456
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sea-level rise will reduce net CO
    Li YL; Guo HQ; Ge ZM; Wang DQ; Liu WL; Xie LN; Li SH; Tan LS; Zhao B; Li XZ; Tang JW
    Sci Total Environ; 2020 Dec; 747():141214. PubMed ID: 32795794
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Thick roots and less microaggregates improve hydrological connectivity.
    Liyi D; Yinghu Z; Ying L; Lumeng X; Shiqiang Z; Zhenming Z
    Chemosphere; 2021 Mar; 266():129008. PubMed ID: 33261839
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sea-level rise thresholds for stability of salt marshes in a riverine versus a marine dominated estuary.
    Wu W; Biber P; Mishra DR; Ghosh S
    Sci Total Environ; 2020 May; 718():137181. PubMed ID: 32105940
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Interactive effects of crab herbivory and spring drought on a Phragmites australis-dominated salt marsh in the Yellow River Delta.
    Zhang L; Lan S; Angelini C; Yi H; Zhao L; Chen L; Han G
    Sci Total Environ; 2021 Apr; 766():144254. PubMed ID: 33421778
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Microtopographical modification by a herbivore facilitates the growth of a coastal saltmarsh plant.
    Qiu D; Yan J; Ma X; Luo M; Wang Q; Cui B
    Mar Pollut Bull; 2019 Mar; 140():431-442. PubMed ID: 30803664
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Herbivory drives zonation of stress-tolerant marsh plants.
    He Q; Altieri AH; Cui B
    Ecology; 2015 May; 96(5):1318-28. PubMed ID: 26236845
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Artificial modification on lateral hydrological connectivity promotes range expansion of invasive Spartina alterniflora in salt marshes of the Yellow River delta, China.
    Xie T; Wang Q; Ning Z; Chen C; Cui B; Bai J; Shi W; Pang B
    Sci Total Environ; 2021 May; 769():144476. PubMed ID: 33460837
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Quantifying the Impact of Hydrological Connectivity on Salt Marsh Vegetation in the Liao River Delta Wetland.
    Chen K; Qu L; Cong P; Liang S; Sun Z; Han J
    Wetlands (Wilmington); 2023; 43(5):45. PubMed ID: 37193562
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.