BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 32927304)

  • 1. Cell migration regulated by RGD nanospacing and enhanced under moderate cell adhesion on biomaterials.
    Liu Q; Zheng S; Ye K; He J; Shen Y; Cui S; Huang J; Gu Y; Ding J
    Biomaterials; 2020 Dec; 263():120327. PubMed ID: 32927304
    [TBL] [Abstract][Full Text] [Related]  

  • 2. RGD Nanoarrays with Nanospacing Gradient Selectively Induce Orientation and Directed Migration of Endothelial and Smooth Muscle Cells.
    He J; Shen R; Liu Q; Zheng S; Wang X; Gao J; Wang Q; Huang J; Ding J
    ACS Appl Mater Interfaces; 2022 Aug; 14(33):37436-37446. PubMed ID: 35943249
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enlargement, Reduction, and Even Reversal of Relative Migration Speeds of Endothelial and Smooth Muscle Cells on Biomaterials Simply by Adjusting RGD Nanospacing.
    He J; Liu Q; Zheng S; Shen R; Wang X; Gao J; Wang Q; Huang J; Ding J
    ACS Appl Mater Interfaces; 2021 Sep; 13(36):42344-42356. PubMed ID: 34469116
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Adhesion, proliferation, and differentiation of mesenchymal stem cells on RGD nanopatterns of varied nanospacings.
    Wang X; Ye K; Li Z; Yan C; Ding J
    Organogenesis; 2013 Oct; 9(4):280-6. PubMed ID: 23959169
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of Nanoscale Spatial Arrangement of Arginine-Glycine-Aspartate Peptides on Dedifferentiation of Chondrocytes.
    Li S; Wang X; Cao B; Ye K; Li Z; Ding J
    Nano Lett; 2015 Nov; 15(11):7755-65. PubMed ID: 26503136
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of RGD nanospacing on differentiation of stem cells.
    Wang X; Yan C; Ye K; He Y; Li Z; Ding J
    Biomaterials; 2013 Apr; 34(12):2865-74. PubMed ID: 23357372
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fabrication of RGD micro/nanopattern and corresponding study of stem cell differentiation.
    Wang X; Li S; Yan C; Liu P; Ding J
    Nano Lett; 2015 Mar; 15(3):1457-67. PubMed ID: 25697623
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of RGD nanospacing on chondrogenic differentiation of mesenchymal stem cells.
    Li Z; Cao B; Wang X; Ye K; Li S; Ding J
    J Mater Chem B; 2015 Jul; 3(26):5197-5209. PubMed ID: 32262595
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Critical adhesion areas of cells on micro-nanopatterns.
    Zheng S; Liu Q; He J; Wang X; Ye K; Wang X; Yan C; Liu P; Ding J
    Nano Res; 2022; 15(2):1623-1635. PubMed ID: 34405038
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Matrix Stiffness and Nanoscale Spatial Organization of Cell-Adhesive Ligands Direct Stem Cell Fate.
    Ye K; Wang X; Cao L; Li S; Li Z; Yu L; Ding J
    Nano Lett; 2015 Jul; 15(7):4720-9. PubMed ID: 26027605
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of Microstripe Geometry on Guided Cell Migration.
    Yao X; Ding J
    ACS Appl Mater Interfaces; 2020 Jun; 12(25):27971-27983. PubMed ID: 32479054
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Regulating the migration of smooth muscle cells by a vertically distributed poly(2-hydroxyethyl methacrylate) gradient on polymer brushes covalently immobilized with RGD peptides.
    Wu S; Du W; Duan Y; Zhang D; Liu Y; Wu B; Zou X; Ouyang H; Gao C
    Acta Biomater; 2018 Jul; 75():75-92. PubMed ID: 29857130
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Endothelial cell migration on RGD-peptide-containing PEG hydrogels in the presence of sphingosine 1-phosphate.
    Wacker BK; Alford SK; Scott EA; Das Thakur M; Longmore GD; Elbert DL
    Biophys J; 2008 Jan; 94(1):273-85. PubMed ID: 17827231
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Impact of order and disorder in RGD nanopatterns on cell adhesion.
    Huang J; Grater SV; Corbellini F; Rinck S; Bock E; Kemkemer R; Kessler H; Ding J; Spatz JP
    Nano Lett; 2009 Mar; 9(3):1111-6. PubMed ID: 19206508
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Photonic control of ligand nanospacing in self-assembly regulates stem cell fate.
    Lee S; Yoo J; Bae G; Thangam R; Heo J; Park JY; Choi H; Kim C; An J; Kim J; Mun KR; Shin S; Zhang K; Zhao P; Kim Y; Kang N; Han SB; Kim D; Yoon J; Kang M; Kim J; Yang L; Karamikamkar S; Kim J; Zhu Y; Najafabadi AH; Song G; Kim DH; Lee KB; Oh SJ; Jung HD; Song HC; Jang WY; Bian L; Chu Z; Yoon J; Kim JS; Zhang YS; Kim Y; Jang HS; Kim S; Kang H
    Bioact Mater; 2024 Apr; 34():164-180. PubMed ID: 38343773
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Model surfaces engineered with nanoscale roughness and RGD tripeptides promote osteoblast activity.
    El-Ghannam AR; Ducheyne P; Risbud M; Adams CS; Shapiro IM; Castner D; Golledge S; Composto RJ
    J Biomed Mater Res A; 2004 Mar; 68(4):615-27. PubMed ID: 14986317
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In situ immobilization of proteins and RGD peptide on polyurethane surfaces via poly(ethylene oxide) coupling polymers for human endothelial cell growth.
    Wang DA; Ji J; Sun YH; Shen JC; Feng LX; Elisseeff JH
    Biomacromolecules; 2002; 3(6):1286-95. PubMed ID: 12425667
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Interplay of Matrix Stiffness and Cell-Cell Contact in Regulating Differentiation of Stem Cells.
    Ye K; Cao L; Li S; Yu L; Ding J
    ACS Appl Mater Interfaces; 2016 Aug; 8(34):21903-13. PubMed ID: 26600563
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The relative importance of topography and RGD ligand density for endothelial cell adhesion.
    Le Saux G; Magenau A; Böcking T; Gaus K; Gooding JJ
    PLoS One; 2011; 6(7):e21869. PubMed ID: 21779342
    [TBL] [Abstract][Full Text] [Related]  

  • 20. RGD modified polymers: biomaterials for stimulated cell adhesion and beyond.
    Hersel U; Dahmen C; Kessler H
    Biomaterials; 2003 Nov; 24(24):4385-415. PubMed ID: 12922151
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.