These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 32927438)

  • 41. Strain-induced enhancement in the electronic and thermal transport properties of the tin sulphide bilayer.
    Nag S; Singh R; Kumar R
    Phys Chem Chem Phys; 2021 Dec; 24(1):211-221. PubMed ID: 34878461
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Thermoelectric properties, efficiency and thermal expansion of ZrNiSn half-Heusler by first-principles calculations.
    Shastri SS; Pandey SK
    J Phys Condens Matter; 2020 Jun; 32(35):. PubMed ID: 32315993
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Ab Initio Study of Carrier Mobility, Thermodynamic and Thermoelectric Properties of Kesterite Cu
    El Hamdaoui J; Kria M; Lakaal K; El-Yadri M; Feddi EM; Pedraja Rejas L; Pérez LM; Díaz P; Mora-Ramos ME; Laroze D
    Int J Mol Sci; 2022 Oct; 23(21):. PubMed ID: 36361579
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Electronic and thermoelectric properties of semiconducting Bi
    Cao SH; Zhang T; Hu CE; Chen XR; Geng HY
    Phys Chem Chem Phys; 2022 Nov; 24(43):26753-26763. PubMed ID: 36314268
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Tweaking the Physics of Interfaces between Monolayers of Buckled Cadmium Sulfide for a Superhigh Piezoelectricity, Excitonic Solar Cell Efficiency, and Thermoelectricity.
    Mohanta MK; Sarkar A
    ACS Appl Mater Interfaces; 2020 Apr; 12(15):18123-18137. PubMed ID: 32223217
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Prediction for electronic, vibrational and thermoelectric properties of chalcopyrite AgX(X=In,Ga)Te
    Yang J; Fan Q; Cheng X
    R Soc Open Sci; 2017 Oct; 4(10):170750. PubMed ID: 29134079
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Investigations on the thermoelectric and thermodynamic properties of Y
    Wang L; Chang WL; Sun ZQ; Zhang ZM
    RSC Adv; 2022 May; 12(23):14377-14383. PubMed ID: 35702233
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Nanoporous Si as an efficient thermoelectric material.
    Lee JH; Galli GA; Grossman JC
    Nano Lett; 2008 Nov; 8(11):3750-4. PubMed ID: 18947211
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Band Structure, Phonon Spectrum and Thermoelectric Properties of Ag
    Pshenay-Severin D; Guin SN; Konstantinov P; Novikov S; Rathore E; Biswas K; Burkov A
    Materials (Basel); 2023 Jan; 16(3):. PubMed ID: 36770135
    [TBL] [Abstract][Full Text] [Related]  

  • 50. First-principles predictions of low lattice thermal conductivity and high thermoelectric performance of AZnSb (A = Rb, Cs).
    Haque E
    RSC Adv; 2021 Apr; 11(25):15486-15496. PubMed ID: 35424042
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Thermoelectric properties of heavy fermion CeRhIn
    Yazdani-Kachoei M; Jalali-Asadabadi S
    RSC Adv; 2019 Nov; 9(62):36182-36197. PubMed ID: 35540618
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Full-scale computation for all the thermoelectric property parameters of half-Heusler compounds.
    Hong AJ; Li L; He R; Gong JJ; Yan ZB; Wang KF; Liu JM; Ren ZF
    Sci Rep; 2016 Mar; 6():22778. PubMed ID: 26947395
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Computational evaluation of optoelectronic properties for organic/carbon materials.
    Shuai Z; Wang D; Peng Q; Geng H
    Acc Chem Res; 2014 Nov; 47(11):3301-9. PubMed ID: 24702037
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Band engineering and improved thermoelectric performance in M-doped SnTe (M = Mg, Mn, Cd, and Hg).
    Tan XJ; Shao HZ; He J; Liu GQ; Xu JT; Jiang J; Jiang HC
    Phys Chem Chem Phys; 2016 Mar; 18(10):7141-7. PubMed ID: 26888151
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Phosphorene nanoribbon as a promising candidate for thermoelectric applications.
    Zhang J; Liu HJ; Cheng L; Wei J; Liang JH; Fan DD; Shi J; Tang XF; Zhang QJ
    Sci Rep; 2014 Sep; 4():6452. PubMed ID: 25245326
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Thermoelectric and vibrational properties of Be
    Maurya V; Paliwal U; Sharma G; Joshi KB
    RSC Adv; 2019 Apr; 9(24):13515-13526. PubMed ID: 35519564
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Exploring structural, mechanical, and thermoelectric properties of half-Heusler compounds RhBiX (X = Ti, Zr, Hf): A first-principles investigation.
    Wei J; Guo Y; Wang G
    RSC Adv; 2023 Apr; 13(17):11513-11524. PubMed ID: 37063731
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Electronic properties and low lattice thermal conductivity (
    Rai DP; Vu TV; Laref A; Hossain MA; Haque E; Ahmad S; Khenata R; Thapa RK
    RSC Adv; 2020 May; 10(32):18830-18840. PubMed ID: 35518316
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Novel thermoelectric performance of 2D 1T- Se
    Chen S; Tao WL; Zhou Y; Zeng ZY; Chen XR; Geng HY
    Nanotechnology; 2021 Aug; 32(45):. PubMed ID: 34348253
    [TBL] [Abstract][Full Text] [Related]  

  • 60. The potential thermoelectric material Tl
    Li B; Zhang C; Sun Z; Han T; Zhang X; Du J; Wang J; Xiao X; Wang N
    Phys Chem Chem Phys; 2022 Oct; 24(39):24447-24456. PubMed ID: 36190779
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.