These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 32927548)

  • 1. Tradeoff between risks through ingestion of nanoparticle contaminated water or fish: Human health perspective.
    Parsai T; Kumar A
    Sci Total Environ; 2020 Oct; 740():140140. PubMed ID: 32927548
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Weight-of-evidence process for assessing human health risk of mixture of metal oxide nanoparticles and corresponding ions in aquatic matrices.
    Parsai T; Kumar A
    Chemosphere; 2021 Jan; 263():128289. PubMed ID: 33297232
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Estimating combined health risks of nanomaterials and antibiotics from natural water: a proposed framework.
    Kumari M; Kumar A
    Environ Sci Pollut Res Int; 2022 Feb; 29(10):13845-13856. PubMed ID: 34596816
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Setting guidelines for co-occurring nanoparticles in water medium.
    Parsai T; Kumar A
    Sci Total Environ; 2021 Jul; 776():145175. PubMed ID: 33647666
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Assessment of toxic interaction of nano zinc oxide and nano copper oxide on germination of Raphanus sativus seeds.
    Singh D; Kumar A
    Environ Monit Assess; 2019 Oct; 191(11):703. PubMed ID: 31673860
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of ageing of bare and coated nanoparticles of zinc oxide applied to soil on the Zn behaviour and toxicity to fish cells due to transfer from soil to water bodies.
    García-Gómez C; García S; Obrador A; Almendros P; González D; Fernández MD
    Sci Total Environ; 2020 Mar; 706():135713. PubMed ID: 31791765
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Aggregation, sedimentation, and dissolution of CuO and ZnO nanoparticles in five waters.
    Liu Z; Wang C; Hou J; Wang P; Miao L; Lv B; Yang Y; You G; Xu Y; Zhang M; Ci H
    Environ Sci Pollut Res Int; 2018 Nov; 25(31):31240-31249. PubMed ID: 30191530
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Influence of daylight on the fate of silver and zinc oxide nanoparticles in natural aquatic environments.
    Odzak N; Kistler D; Sigg L
    Environ Pollut; 2017 Jul; 226():1-11. PubMed ID: 28395184
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Insights into the CuO nanoparticle ecotoxicity with suitable marine model species.
    Rotini A; Gallo A; Parlapiano I; Berducci MT; Boni R; Tosti E; Prato E; Maggi C; Cicero AM; Migliore L; Manfra L
    Ecotoxicol Environ Saf; 2018 Jan; 147():852-860. PubMed ID: 28968938
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The embryotoxicity of ZnO nanoparticles to marine medaka, Oryzias melastigma.
    Cong Y; Jin F; Wang J; Mu J
    Aquat Toxicol; 2017 Apr; 185():11-18. PubMed ID: 28157544
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Understanding effect of solution chemistry on heteroaggregation of zinc oxide and copper oxide nanoparticles.
    Parsai T; Kumar A
    Chemosphere; 2019 Nov; 235():457-469. PubMed ID: 31272006
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quantification of metal uptake in Spinacia oleracea irrigated with water containing a mixture of CuO and ZnO nanoparticles.
    Singh D; Kumar A
    Chemosphere; 2020 Mar; 243():125239. PubMed ID: 31733544
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fate of CuO and ZnO nano- and microparticles in the plant environment.
    Dimkpa CO; Latta DE; McLean JE; Britt DW; Boyanov MI; Anderson AJ
    Environ Sci Technol; 2013 May; 47(9):4734-42. PubMed ID: 23540424
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparative study on toxicity of ZnO and TiO
    Bhuvaneshwari M; Sagar B; Doshi S; Chandrasekaran N; Mukherjee A
    Environ Sci Pollut Res Int; 2017 Feb; 24(6):5633-5646. PubMed ID: 28039626
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Histopathological effects following short-term coexposure of Cyprinus carpio to nanoparticles of TiO2 and CuO.
    Mansouri B; Maleki A; Davari B; Johari SA; Shahmoradi B; Mohammadi E; Shahsavari S
    Environ Monit Assess; 2016 Oct; 188(10):575. PubMed ID: 27650436
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Uptake and toxicity of CuO nanoparticles to Daphnia magna varies between indirect dietary and direct waterborne exposures.
    Wu F; Bortvedt A; Harper BJ; Crandon LE; Harper SL
    Aquat Toxicol; 2017 Sep; 190():78-86. PubMed ID: 28697458
    [TBL] [Abstract][Full Text] [Related]  

  • 17. ZnO and CuO nanoparticles: a threat to soil organisms, plants, and human health.
    Rajput V; Minkina T; Sushkova S; Behal A; Maksimov A; Blicharska E; Ghazaryan K; Movsesyan H; Barsova N
    Environ Geochem Health; 2020 Jan; 42(1):147-158. PubMed ID: 31111333
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bioaccumulation and toxicity of CuO nanoparticles by a freshwater invertebrate after waterborne and dietborne exposures.
    Croteau MN; Misra SK; Luoma SN; Valsami-Jones E
    Environ Sci Technol; 2014 Sep; 48(18):10929-37. PubMed ID: 25110983
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of ZnO and CuO nanoparticles on the growth, nutrient absorption, and potential health risk of the seasonal vegetable
    Ji H; Guo Z; Wang G; Wang X; Liu H
    PeerJ; 2022; 10():e14038. PubMed ID: 36164609
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sources, pathways, and relative risks of contaminants in surface water and groundwater: a perspective prepared for the Walkerton inquiry.
    Ritter L; Solomon K; Sibley P; Hall K; Keen P; Mattu G; Linton B
    J Toxicol Environ Health A; 2002 Jan; 65(1):1-142. PubMed ID: 11809004
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.