These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

318 related articles for article (PubMed ID: 32927595)

  • 41. Thermoresponsive polymers: insights into decisive hydrogel characteristics, mechanisms of gelation, and promising biomedical applications.
    Matanović MR; Kristl J; Grabnar PA
    Int J Pharm; 2014 Sep; 472(1-2):262-75. PubMed ID: 24950367
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Quality by Design approach for an in situ gelling microemulsion of Lorazepam via intranasal route.
    Shah V; Sharma M; Pandya R; Parikh RK; Bharatiya B; Shukla A; Tsai HC
    Mater Sci Eng C Mater Biol Appl; 2017 Jun; 75():1231-1241. PubMed ID: 28415411
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Thermoreversible-mucoadhesive gel for nasal delivery of sumatriptan.
    Majithiya RJ; Ghosh PK; Umrethia ML; Murthy RS
    AAPS PharmSciTech; 2006 Aug; 7(3):67. PubMed ID: 17025248
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Potential of Stimuli-Responsive In Situ Gel System for Sustained Ocular Drug Delivery: Recent Progress and Contemporary Research.
    Pandey M; Choudhury H; Binti Abd Aziz A; Bhattamisra SK; Gorain B; Su JST; Tan CL; Chin WY; Yip KY
    Polymers (Basel); 2021 Apr; 13(8):. PubMed ID: 33923900
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Intra Nasal
    Paul A; Fathima KM; Nair SC
    Open Med Chem J; 2017; 11():222-244. PubMed ID: 29399211
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Enhanced bioavailability of metoclopramide HCl by intranasal administration of a mucoadhesive in situ gel with modulated rheological and mucociliary transport properties.
    Zaki NM; Awad GA; Mortada ND; Abd Elhady SS
    Eur J Pharm Sci; 2007 Dec; 32(4-5):296-307. PubMed ID: 17920822
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Curcumin In Situ Gelling Polymeric Insert with Enhanced Ocular Performance.
    Abdelkader H; Wertheim D; Pierscionek B; Alany RG
    Pharmaceutics; 2020 Nov; 12(12):. PubMed ID: 33260494
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Recent advances in ocular drug delivery.
    Achouri D; Alhanout K; Piccerelle P; Andrieu V
    Drug Dev Ind Pharm; 2013 Nov; 39(11):1599-617. PubMed ID: 23153114
    [TBL] [Abstract][Full Text] [Related]  

  • 49. In situ gel-forming system: an attractive alternative for nasal drug delivery.
    Wang X; Liu G; Ma J; Guo S; Gao L; Jia Y; Li X; Zhang Q
    Crit Rev Ther Drug Carrier Syst; 2013; 30(5):411-34. PubMed ID: 24099327
    [TBL] [Abstract][Full Text] [Related]  

  • 50. In situ gelling, bioadhesive nasal inserts for extended drug delivery: in vitro characterization of a new nasal dosage form.
    Bertram U; Bodmeier R
    Eur J Pharm Sci; 2006 Jan; 27(1):62-71. PubMed ID: 16213127
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Norfloxacin Loaded pH Triggered Nanoparticulate in-situ Gel for Extraocular Bacterial Infections: Optimization, Ocular Irritancy and Corneal Toxicity.
    Upadhayay P; Kumar M; Pathak K
    Iran J Pharm Res; 2016; 15(1):3-22. PubMed ID: 27610144
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Strategies to prolong the intravaginal residence time of drug delivery systems.
    Baloglu E; Senyigit ZA; Karavana SY; Bernkop-Schnürch A
    J Pharm Pharm Sci; 2009; 12(3):312-36. PubMed ID: 20067707
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Poloxamer-based in situ gelling thermoresponsive systems for ocular drug delivery applications.
    Soliman KA; Ullah K; Shah A; Jones DS; Singh TRR
    Drug Discov Today; 2019 Aug; 24(8):1575-1586. PubMed ID: 31175956
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Development and characterization of in-situ gel for ophthalmic formulation containing ciprofloxacin hydrochloride.
    Makwana SB; Patel VA; Parmar SJ
    Results Pharma Sci; 2016; 6():1-6. PubMed ID: 26949596
    [TBL] [Abstract][Full Text] [Related]  

  • 55. [In situ gelling polymers for ophthalmic drops].
    Sklubalová Z
    Ceska Slov Farm; 2005 Jan; 54(1):4-10. PubMed ID: 15751788
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Harmonious Biomaterials for Development of In situ Approaches for Locoregional Delivery of Anti-cancer Drugs: Current Trends.
    Singh A; Thakur S; Sharma T; Kaur M; Sahajpal NS; Aurora R; Jain SK
    Curr Med Chem; 2020; 27(21):3463-3498. PubMed ID: 31223077
    [TBL] [Abstract][Full Text] [Related]  

  • 57. In-situ forming gels containing fluorometholone-loaded polymeric nanoparticles for ocular inflammatory conditions.
    Gonzalez-Pizarro R; Carvajal-Vidal P; Halbault Bellowa L; Calpena AC; Espina M; García ML
    Colloids Surf B Biointerfaces; 2019 Mar; 175():365-374. PubMed ID: 30554015
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Thermogels: In Situ Gelling Biomaterial.
    Liow SS; Dou Q; Kai D; Karim AA; Zhang K; Xu F; Loh XJ
    ACS Biomater Sci Eng; 2016 Mar; 2(3):295-316. PubMed ID: 33429534
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Freeze-Dried Matrices Based on Polyanion Polymers for Chlorhexidine Local Release in the Buccal and Vaginal Cavities.
    Giordani B; Abruzzo A; Musazzi UM; Cilurzo F; Nicoletta FP; Dalena F; Parolin C; Vitali B; Cerchiara T; Luppi B; Bigucci F
    J Pharm Sci; 2019 Jul; 108(7):2447-2457. PubMed ID: 30853513
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Mucoadhesive In Situ Gelling Liquid Crystalline Precursor System to Improve the Vaginal Administration of Drugs.
    de Araújo PR; Calixto GMF; da Silva IC; de Paula Zago LH; Oshiro Junior JA; Pavan FR; Ribeiro AO; Fontana CR; Chorilli M
    AAPS PharmSciTech; 2019 Jun; 20(6):225. PubMed ID: 31214798
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.