These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 32927698)

  • 41. Influence of
    Morata A; Escott C; Loira I; Del Fresno JM; González C; Suárez-Lepe JA
    Molecules; 2019 Dec; 24(24):. PubMed ID: 31817948
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Rootstock effects on grape anthocyanins, skin and seed proanthocyanidins and wine color and phenolic compounds from Vitis vinifera L. Merlot grapevines.
    Gutiérrez-Gamboa G; Gómez-Plaza E; Bautista-Ortín AB; Garde-Cerdán T; Moreno-Simunovic Y; Martínez-Gil AM
    J Sci Food Agric; 2019 Apr; 99(6):2846-2854. PubMed ID: 30447086
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Developmental profile of anthocyanin, flavonol, and proanthocyanidin type, content, and localization in saskatoon fruits (Amelanchier alnifolia Nutt.).
    Jin AL; Ozga JA; Kennedy JA; Koerner-Smith JL; Botar G; Reinecke DM
    J Agric Food Chem; 2015 Feb; 63(5):1601-14. PubMed ID: 25562425
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Optimizing Nucleophilic Depolymerization of Proanthocyanidins in Grape Seeds to Dimeric Proanthocyanidin B1 or B2.
    Wen KS; Ruan X; Wang J; Yang L; Wei F; Zhao YX; Wang Q
    J Agric Food Chem; 2019 May; 67(21):5978-5988. PubMed ID: 31070025
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Prediction of wine color attributes from the phenolic profiles of red grapes (Vitis vinifera).
    Jensen JS; Demiray S; Egebo M; Meyer AS
    J Agric Food Chem; 2008 Feb; 56(3):1105-15. PubMed ID: 18173238
    [TBL] [Abstract][Full Text] [Related]  

  • 46. The extraction of anthocyanins and proanthocyanidins from grapes to wine during fermentative maceration is affected by the enological technique.
    Busse-Valverde N; Gómez-Plaza E; López-Roca JM; Gil-Muñoz R; Bautista-Ortín AB
    J Agric Food Chem; 2011 May; 59(10):5450-5. PubMed ID: 21462997
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Anthocyanin adsorption by Saccharomyces cerevisiae during wine fermentation is associated to the loss of yeast cell wall/membrane integrity.
    Echeverrigaray S; Scariot FJ; Menegotto M; Delamare APL
    Int J Food Microbiol; 2020 Feb; 314():108383. PubMed ID: 31698283
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Fate of Anthocyanins and Proanthocyanidins during the Alcoholic Fermentation of Thermovinified Red Musts by Different
    Vernhet A; Carrillo S; Rattier A; Verbaere A; Cheynier V; Nguela JM
    J Agric Food Chem; 2020 Mar; 68(11):3615-3625. PubMed ID: 32067460
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Bioavailability of red wine and grape seed proanthocyanidins in rats.
    Pereira-Caro G; Gaillet S; Ordóñez JL; Mena P; Bresciani L; Bindon KA; Del Rio D; Rouanet JM; Moreno-Rojas JM; Crozier A
    Food Funct; 2020 May; 11(5):3986-4001. PubMed ID: 32347279
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Selectivity of pigments extraction from grapes and their partial retention in the pomace during red-winemaking.
    Favre G; Hermosín-Gutiérrez I; Piccardo D; Gómez-Alonso S; González-Neves G
    Food Chem; 2019 Mar; 277():391-397. PubMed ID: 30502162
    [TBL] [Abstract][Full Text] [Related]  

  • 51. The metabolomic profile of red non-V. vinifera genotypes.
    Ruocco S; Stefanini M; Stanstrup J; Perenzoni D; Mattivi F; Vrhovsek U
    Food Res Int; 2017 Aug; 98():10-19. PubMed ID: 28610726
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Occurrence and formation kinetics of pyranomalvidin-procyanidin dimer pigment in Merlot red wine: impact of acidity and oxygen concentrations.
    Pechamat L; Zeng L; Jourdes M; Ghidossi R; Teissedre PL
    J Agric Food Chem; 2014 Feb; 62(7):1701-5. PubMed ID: 24476064
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Properties of wine polymeric pigments formed from anthocyanin and tannins differing in size distribution and subunit composition.
    Bindon K; Kassara S; Hayasaka Y; Schulkin A; Smith P
    J Agric Food Chem; 2014 Nov; 62(47):11582-93. PubMed ID: 25356846
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Accumulation and extractability of grape skin tannins and anthocyanins at different advanced physiological stages.
    Fournand D; Vicens A; Sidhoum L; Souquet JM; Moutounet M; Cheynier V
    J Agric Food Chem; 2006 Sep; 54(19):7331-8. PubMed ID: 16968102
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Phenolic compounds extraction in enzymatic macerations of grape skins identified as low-level extractable total anthocyanin content.
    Nogales-Bueno J; Baca-Bocanegra B; Heredia FJ; Hernández-Hierro JM
    J Food Sci; 2020 Feb; 85(2):324-331. PubMed ID: 31968392
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Liquid chromatography-tandem mass spectrometry reveals detailed chromatographic fingerprints of anthocyanins and anthocyanin adducts in red wine.
    Laitila JE; Suvanto J; Salminen JP
    Food Chem; 2019 Oct; 294():138-151. PubMed ID: 31126446
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Controlled water deficit during ripening affects proanthocyanidin synthesis, concentration and composition in Cabernet Sauvignon grape skins.
    Cáceres-Mella A; Talaverano MI; Villalobos-González L; Ribalta-Pizarro C; Pastenes C
    Plant Physiol Biochem; 2017 Aug; 117():34-41. PubMed ID: 28587991
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Increase of antioxidative potential of rat plasma by oral administration of proanthocyanidin-rich extract from grape seeds.
    Koga T; Moro K; Nakamori K; Yamakoshi J; Hosoyama H; Kataoka S; Ariga T
    J Agric Food Chem; 1999 May; 47(5):1892-7. PubMed ID: 10552467
    [TBL] [Abstract][Full Text] [Related]  

  • 59. C18 core-shell column with in-series absorbance and fluorescence detection for simultaneous monitoring of changes in stilbenoid and proanthocyanidin concentrations during grape cane storage.
    Sáez V; Gayoso C; Riquelme S; Pérez J; Vergara C; Mardones C; von Baer D
    J Chromatogr B Analyt Technol Biomed Life Sci; 2018 Feb; 1074-1075():70-78. PubMed ID: 29331860
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Investigating the relationship between grape cell wall polysaccharide composition and the extractability of phenolic compounds into Shiraz wines. Part I: Vintage and ripeness effects.
    Garrido-Bañuelos G; Buica A; Schückel J; Zietsman AJJ; Willats WGT; Moore JP; Du Toit WJ
    Food Chem; 2019 Apr; 278():36-46. PubMed ID: 30583384
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.