These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 32927950)

  • 1. Synergistic Noncovalent Catalysis Facilitates Base-Free Michael Addition.
    Wang J; Young TA; Duarte F; Lusby PJ
    J Am Chem Soc; 2020 Oct; 142(41):17743-17750. PubMed ID: 32927950
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Catalytic Carbon-Carbon Bond-Forming Reactions of Weakly Acidic Carbon Pronucleophiles Using Strong Brønsted Bases as Catalysts.
    Yamashita Y; Kobayashi S
    Chemistry; 2018 Jan; 24(1):10-17. PubMed ID: 28833781
    [TBL] [Abstract][Full Text] [Related]  

  • 3. KOtBu-Catalyzed Michael Addition Reactions Under Mild and Solvent-Free Conditions.
    Thiyagarajan S; Krishnakumar V; Gunanathan C
    Chem Asian J; 2020 Feb; 15(4):518-523. PubMed ID: 31957937
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mechanistic Insight into Asymmetric Hetero-Michael Addition of α,β-Unsaturated Carboxylic Acids Catalyzed by Multifunctional Thioureas.
    Hayama N; Kuramoto R; Földes T; Nishibayashi K; Kobayashi Y; Pápai I; Takemoto Y
    J Am Chem Soc; 2018 Sep; 140(38):12216-12225. PubMed ID: 30215516
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Acid-Base Catalysis in Glycosidations: A Nature Derived Alternative to the Generally Employed Methodology.
    Peng P; Schmidt RR
    Acc Chem Res; 2017 May; 50(5):1171-1183. PubMed ID: 28440624
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The Electrogenerated Cyanomethyl Anion: An Old Base Still Smart.
    Chiarotto I; Mattiello L; Feroci M
    Acc Chem Res; 2019 Dec; 52(12):3297-3308. PubMed ID: 31714056
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Rhodium-Catalyzed Benzylic Addition Reactions of Alkylarenes to Michael Acceptors.
    Li Y; Wu WQ; Zhu H; Kang QK; Xu L; Shi H
    Angew Chem Int Ed Engl; 2022 Aug; 61(35):e202207917. PubMed ID: 35767354
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Origins of High-Activity Cage-Catalyzed Michael Addition.
    Boaler PJ; Piskorz TK; Bickerton LE; Wang J; Duarte F; Lloyd-Jones GC; Lusby PJ
    J Am Chem Soc; 2024 Jul; 146(28):19317-19326. PubMed ID: 38976816
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enamides and enecarbamates as nucleophiles in stereoselective C-C and C-N bond-forming reactions.
    Matsubara R; Kobayashi S
    Acc Chem Res; 2008 Feb; 41(2):292-301. PubMed ID: 18281949
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Photocatalytic Activation of Less Reactive Bonds and Their Functionalization via Hydrogen-Evolution Cross-Couplings.
    Chen B; Wu LZ; Tung CH
    Acc Chem Res; 2018 Oct; 51(10):2512-2523. PubMed ID: 30280898
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cinchona Alkaloid-Squaramide Catalyzed Sulfa-Michael Addition Reaction: Mode of Bifunctional Activation and Origin of Stereoinduction.
    Guo J; Wong MW
    J Org Chem; 2017 Apr; 82(8):4362-4368. PubMed ID: 28301144
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enantioselective construction of tetrasubstituted stereogenic carbons through Brønsted base catalyzed michael reactions: α'-hydroxy enones as key enoate equivalent.
    Badiola E; Fiser B; Gómez-Bengoa E; Mielgo A; Olaizola I; Urruzuno I; García JM; Odriozola JM; Razkin J; Oiarbide M; Palomo C
    J Am Chem Soc; 2014 Dec; 136(51):17869-81. PubMed ID: 25423341
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Low-oxidation state indium-catalyzed C-C bond formation.
    Schneider U; Kobayashi S
    Acc Chem Res; 2012 Aug; 45(8):1331-44. PubMed ID: 22626010
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Carbon Acidity in Enzyme Active Sites.
    Toney MD
    Front Bioeng Biotechnol; 2019; 7():25. PubMed ID: 30838206
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ligand-based carbon-nitrogen bond forming reactions of metal dinitrosyl complexes with alkenes and their application to C-H bond functionalization.
    Zhao C; Crimmin MR; Toste FD; Bergman RG
    Acc Chem Res; 2014 Feb; 47(2):517-29. PubMed ID: 24359109
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enantioselective Carbonyl 1,2- or 1,4-Addition Reactions of Nucleophilic Silyl and Diazo Compounds Catalyzed by the Chiral Oxazaborolidinium Ion.
    Shim SY; Ryu DH
    Acc Chem Res; 2019 Aug; 52(8):2349-2360. PubMed ID: 31314494
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Potassium Amide-Catalyzed Benzylic C-H Bond Addition of Alkylpyridines to Styrenes.
    Zhai DD; Zhang XY; Liu YF; Zheng L; Guan BT
    Angew Chem Int Ed Engl; 2018 Feb; 57(6):1650-1653. PubMed ID: 29281163
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Computational Insights into the Central Role of Nonbonding Interactions in Modern Covalent Organocatalysis.
    Walden DM; Ogba OM; Johnston RC; Cheong PH
    Acc Chem Res; 2016 Jun; 49(6):1279-91. PubMed ID: 27267964
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mukaiyama-Michael reactions with trans-2,5-diarylpyrrolidine catalysts: enantioselectivity arises from attractive noncovalent interactions, not from steric hindrance.
    Kemppainen EK; Sahoo G; Piisola A; Hamza A; Kótai B; Pápai I; Pihko PM
    Chemistry; 2014 May; 20(20):5983-93. PubMed ID: 24692273
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Synthetic Applications of Proton-Coupled Electron Transfer.
    Gentry EC; Knowles RR
    Acc Chem Res; 2016 Aug; 49(8):1546-56. PubMed ID: 27472068
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.