These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 32927950)

  • 21. Acid-base catalysis of chiral Pd complexes: development of novel catalytic asymmetric reactions and their application to synthesis of drug candidates.
    Hamashima Y
    Chem Pharm Bull (Tokyo); 2006 Oct; 54(10):1351-64. PubMed ID: 17015970
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Activating Pronucleophiles with High pK
    Wang YH; Cao ZY; Li QH; Lin GQ; Zhou J; Tian P
    Angew Chem Int Ed Engl; 2020 May; 59(21):8004-8014. PubMed ID: 31788933
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Brønsted Base-Catalyzed Umpolung Intramolecular Cyclization of Alkynyl Imines.
    Kondoh A; Terada M
    Chemistry; 2018 Mar; 24(16):3998-4001. PubMed ID: 29341333
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Acid-base bifunctional catalysis of silica-alumina-supported organic amines for carbon-carbon bond-forming reactions.
    Motokura K; Tomita M; Tada M; Iwasawa Y
    Chemistry; 2008; 14(13):4017-27. PubMed ID: 18351703
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Dipeptide-catalysed Michael reaction under physiological conditions: Examination of potential bioorthogonality.
    Schuster F; Grau BW; Xu HG; Mokhir A; Tsogoeva SB
    Bioorg Med Chem; 2024 Apr; 103():117650. PubMed ID: 38492540
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Covalent catalysis by pyridoxal: evaluation of the effect of the cofactor on the carbon acidity of glycine.
    Toth K; Richard JP
    J Am Chem Soc; 2007 Mar; 129(10):3013-21. PubMed ID: 17298067
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The Emergence of Anion-π Catalysis.
    Zhao Y; Cotelle Y; Liu L; López-Andarias J; Bornhof AB; Akamatsu M; Sakai N; Matile S
    Acc Chem Res; 2018 Sep; 51(9):2255-2263. PubMed ID: 30188692
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Generation and Application of Homoenolate Equivalents Utilizing [1,2]-Phospha-Brook Rearrangement under Brønsted Base Catalysis.
    Kondoh A; Aoki T; Terada M
    Chemistry; 2017 Feb; 23(12):2769-2773. PubMed ID: 27918634
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Evidence that protons can be the active catalysts in Lewis acid mediated hetero-Michael addition reactions.
    Wabnitz TC; Yu JQ; Spencer JB
    Chemistry; 2004 Jan; 10(2):484-93. PubMed ID: 14735517
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Difluorocarbene as a Building Block for Consecutive Bond-Forming Reactions.
    Dilman AD; Levin VV
    Acc Chem Res; 2018 May; 51(5):1272-1280. PubMed ID: 29664601
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Enantioselective Addition Reaction of Azlactones with Styrene Derivatives Catalyzed by Strong Chiral Brønsted Acids.
    Kikuchi J; Terada M
    Angew Chem Int Ed Engl; 2019 Jun; 58(25):8458-8462. PubMed ID: 31016828
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Theoretical studies on the bifunctionality of chiral thiourea-based organocatalysts: competing routes to C-C bond formation.
    Hamza A; Schubert G; Soós T; Papai I
    J Am Chem Soc; 2006 Oct; 128(40):13151-60. PubMed ID: 17017795
    [TBL] [Abstract][Full Text] [Related]  

  • 33. When Light Meets Nitrogen-Centered Radicals: From Reagents to Catalysts.
    Yu XY; Zhao QQ; Chen J; Xiao WJ; Chen JR
    Acc Chem Res; 2020 May; 53(5):1066-1083. PubMed ID: 32286794
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Brønsted Base-Catalyzed Formal Reductive [3+2] Annulation of 4,4,4-Trifluorocrotonate and α-Iminoketones.
    Kondoh A; Terada M
    Chemistry; 2021 Jan; 27(2):585-588. PubMed ID: 32869872
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Chiral Pd aqua complex-catalyzed asymmetric C-C bond-forming reactions: a Brønsted acid-base cooperative system.
    Sodeoka M; Hamashima Y
    Chem Commun (Camb); 2009 Oct; (39):5787-98. PubMed ID: 19787104
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Theoretical insights into the functioning of metallopeptidases and their synthetic analogues.
    Zhang T; Ozbil M; Barman A; Paul TJ; Bora RP; Prabhakar R
    Acc Chem Res; 2015 Feb; 48(2):192-200. PubMed ID: 25607542
    [TBL] [Abstract][Full Text] [Related]  

  • 37. On the importance of being zwitterionic: enzymatic catalysis of decarboxylation and deprotonation of cationic carbon.
    Richard JP; Amyes TL
    Bioorg Chem; 2004 Oct; 32(5):354-66. PubMed ID: 15381401
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Intermolecular insertion of an N,N-heterocyclic carbene into a nonacidic C-H bond: Kinetics, mechanism and catalysis by (K-HMDS)2 (HMDS = Hexamethyldisilazide).
    Lloyd-Jones GC; Alder RW; Owen-Smith GJ
    Chemistry; 2006 Jul; 12(20):5361-75. PubMed ID: 16673429
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Meldrum's acids and 5-alkylidene Meldrum's acids in catalytic carbon-carbon bond-forming processes.
    Dumas AM; Fillion E
    Acc Chem Res; 2010 Mar; 43(3):440-54. PubMed ID: 20000793
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Inert C-H Bond Transformations Enabled by Organometallic Manganese Catalysis.
    Hu Y; Zhou B; Wang C
    Acc Chem Res; 2018 Mar; 51(3):816-827. PubMed ID: 29443496
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.