These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 32928068)

  • 1. The Influence of Printing Parameters and Cell Density on Bioink Printing Outcomes.
    Gillispie GJ; Han A; Uzun-Per M; Fisher J; Mikos AG; Niazi MKK; Yoo JJ; Lee SJ; Atala A
    Tissue Eng Part A; 2020 Dec; 26(23-24):1349-1358. PubMed ID: 32928068
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of bioink properties on printability and cell viability for 3D bioplotting of embryonic stem cells.
    Ouyang L; Yao R; Zhao Y; Sun W
    Biofabrication; 2016 Sep; 8(3):035020. PubMed ID: 27634915
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The influence of printing parameters on cell survival rate and printability in microextrusion-based 3D cell printing technology.
    Zhao Y; Li Y; Mao S; Sun W; Yao R
    Biofabrication; 2015 Nov; 7(4):045002. PubMed ID: 26523399
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Development and quantitative characterization of the precursor rheology of hyaluronic acid hydrogels for bioprinting.
    Kiyotake EA; Douglas AW; Thomas EE; Nimmo SL; Detamore MS
    Acta Biomater; 2019 Sep; 95():176-187. PubMed ID: 30669003
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Simulations of 3D bioprinting: predicting bioprintability of nanofibrillar inks.
    Göhl J; Markstedt K; Mark A; Håkansson K; Gatenholm P; Edelvik F
    Biofabrication; 2018 Jun; 10(3):034105. PubMed ID: 29809162
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Assessing bioink shape fidelity to aid material development in 3D bioprinting.
    Ribeiro A; Blokzijl MM; Levato R; Visser CW; Castilho M; Hennink WE; Vermonden T; Malda J
    Biofabrication; 2017 Nov; 10(1):014102. PubMed ID: 28976364
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High density cell seeding affects the rheology and printability of collagen bioinks.
    Diamantides N; Dugopolski C; Blahut E; Kennedy S; Bonassar LJ
    Biofabrication; 2019 Aug; 11(4):045016. PubMed ID: 31342915
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The correlation between rheological properties and extrusion-based printability in bioink artifact quantification.
    Gillispie GJ; Copus J; Uzun-Per M; Yoo JJ; Atala A; Niazi MKK; Lee SJ
    Mater Des; 2023 Sep; 233():. PubMed ID: 37854951
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Advancing bioinks for 3D bioprinting using reactive fillers: A review.
    Heid S; Boccaccini AR
    Acta Biomater; 2020 Sep; 113():1-22. PubMed ID: 32622053
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Printability in extrusion bioprinting.
    Fu Z; Naghieh S; Xu C; Wang C; Sun W; Chen X
    Biofabrication; 2021 Apr; 13(3):. PubMed ID: 33601340
    [TBL] [Abstract][Full Text] [Related]  

  • 11. ECM Based Bioink for Tissue Mimetic 3D Bioprinting.
    Nam SY; Park SH
    Adv Exp Med Biol; 2018; 1064():335-353. PubMed ID: 30471042
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A bioink blend for rotary 3D bioprinting tissue engineered small-diameter vascular constructs.
    Freeman S; Ramos R; Alexis Chando P; Zhou L; Reeser K; Jin S; Soman P; Ye K
    Acta Biomater; 2019 Sep; 95():152-164. PubMed ID: 31271883
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hydrogel-Colloid Composite Bioinks for Targeted Tissue-Printing.
    Michel R; Auzély-Velty R
    Biomacromolecules; 2020 Aug; 21(8):2949-2965. PubMed ID: 32568527
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Embedded 3D Bioprinting of Gelatin Methacryloyl-Based Constructs with Highly Tunable Structural Fidelity.
    Ning L; Mehta R; Cao C; Theus A; Tomov M; Zhu N; Weeks ER; Bauser-Heaton H; Serpooshan V
    ACS Appl Mater Interfaces; 2020 Oct; 12(40):44563-44577. PubMed ID: 32966746
    [TBL] [Abstract][Full Text] [Related]  

  • 15. 3D Bioprinting of shear-thinning hybrid bioinks with excellent bioactivity derived from gellan/alginate and thixotropic magnesium phosphate-based gels.
    Chen Y; Xiong X; Liu X; Cui R; Wang C; Zhao G; Zhi W; Lu M; Duan K; Weng J; Qu S; Ge J
    J Mater Chem B; 2020 Jul; 8(25):5500-5514. PubMed ID: 32484194
    [TBL] [Abstract][Full Text] [Related]  

  • 16. 3D bioprinting of a hyaluronan bioink through enzymatic-and visible light-crosslinking.
    Petta D; Armiento AR; Grijpma D; Alini M; Eglin D; D'Este M
    Biofabrication; 2018 Sep; 10(4):044104. PubMed ID: 30188324
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enhanced rheological behaviors of alginate hydrogels with carrageenan for extrusion-based bioprinting.
    Kim MH; Lee YW; Jung WK; Oh J; Nam SY
    J Mech Behav Biomed Mater; 2019 Oct; 98():187-194. PubMed ID: 31252328
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Correlating rheological properties and printability of collagen bioinks: the effects of riboflavin photocrosslinking and pH.
    Diamantides N; Wang L; Pruiksma T; Siemiatkoski J; Dugopolski C; Shortkroff S; Kennedy S; Bonassar LJ
    Biofabrication; 2017 Jul; 9(3):034102. PubMed ID: 28677597
    [TBL] [Abstract][Full Text] [Related]  

  • 19. 3D Bioprinting of Low-Concentration Cell-Laden Gelatin Methacrylate (GelMA) Bioinks with a Two-Step Cross-linking Strategy.
    Yin J; Yan M; Wang Y; Fu J; Suo H
    ACS Appl Mater Interfaces; 2018 Feb; 10(8):6849-6857. PubMed ID: 29405059
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reversible physical crosslinking strategy with optimal temperature for 3D bioprinting of human chondrocyte-laden gelatin methacryloyl bioink.
    Gu Y; Zhang L; Du X; Fan Z; Wang L; Sun W; Cheng Y; Zhu Y; Chen C
    J Biomater Appl; 2018 Nov; 33(5):609-618. PubMed ID: 30360677
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.