BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 32928096)

  • 1. The speciation and adaptation of the polyploids: a case study of the Chinese Isoetes L. diploid-polyploid complex.
    Dai X; Li X; Huang Y; Liu X
    BMC Evol Biol; 2020 Sep; 20(1):118. PubMed ID: 32928096
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Population genomics of the Isoetes appalachiana (Isoetaceae) complex supports a 'diploids-first' approach to conservation.
    Wickell D; Landis J; Zimmer E; Li FW
    Ann Bot; 2024 Apr; 133(2):261-272. PubMed ID: 37967308
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Polyploid plants have faster rates of multivariate niche differentiation than their diploid relatives.
    Baniaga AE; Marx HE; Arrigo N; Barker MS
    Ecol Lett; 2020 Jan; 23(1):68-78. PubMed ID: 31637845
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Speciation pathway of Isoetes (Isoetaceae) in East Asia inferred from molecular phylogenetic relationships.
    Kim C; Shin H; Chang YT; Choi HK
    Am J Bot; 2010 Jun; 97(6):958-69. PubMed ID: 21622466
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Chasing ghosts: allopolyploid origin of Oxyria sinensis (Polygonaceae) from its only diploid congener and an unknown ancestor.
    Luo X; Hu Q; Zhou P; Zhang D; Wang Q; Abbott RJ; Liu J
    Mol Ecol; 2017 Jun; 26(11):3037-3049. PubMed ID: 28295838
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Early consequences of allopolyploidy alter floral evolution in Nicotiana (Solanaceae).
    McCarthy EW; Landis JB; Kurti A; Lawhorn AJ; Chase MW; Knapp S; Le Comber SC; Leitch AR; Litt A
    BMC Plant Biol; 2019 Apr; 19(1):162. PubMed ID: 31029077
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biased gene expression reveals the contribution of subgenome to altitude adaptation in allopolyploid
    Wei P; Yu XL; Yang YJ; Chen ZY; Zhao SQ; Li XZ; Zhang WC; Liu CL; Li XY; Liu X
    Ecol Evol; 2022 Dec; 12(12):e9677. PubMed ID: 36619709
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A high frequency of allopolyploid speciation in the gymnospermous genus Ephedra and its possible association with some biological and ecological features.
    Wu H; Ma Z; Wang MM; Qin AL; Ran JH; Wang XQ
    Mol Ecol; 2016 Mar; 25(5):1192-210. PubMed ID: 26800145
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fine-scale empirical data on niche divergence and homeolog expression patterns in an allopolyploid and its diploid progenitor species.
    Akiyama R; Sun J; Hatakeyama M; Lischer HEL; Briskine RV; Hay A; Gan X; Tsiantis M; Kudoh H; Kanaoka MM; Sese J; Shimizu KK; Shimizu-Inatsugi R
    New Phytol; 2021 Mar; 229(6):3587-3601. PubMed ID: 33222195
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Polyploidy associated with altered and broader ecological niches in the Claytonia perfoliata (Portulacaceae) species complex.
    McIntyre PJ
    Am J Bot; 2012 Apr; 99(4):655-62. PubMed ID: 22434773
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evidence for shared broad-scale climatic niches of diploid and polyploid plants.
    Glennon KL; Ritchie ME; Segraves KA
    Ecol Lett; 2014 May; 17(5):574-82. PubMed ID: 24818236
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cryptic gene pools in the Hypericum perforatum-H. maculatum complex: diploid persistence versus trapped polyploid melting.
    Scheriau CL; Nuerk NM; Sharbel TF; Koch MA
    Ann Bot; 2017 Nov; 120(6):955-966. PubMed ID: 29182722
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Divergences in hydraulic architecture form an important basis for niche differentiation between diploid and polyploid Betula species in NE China.
    Zhang WW; Song J; Wang M; Liu YY; Li N; Zhang YJ; Holbrook NM; Hao GY
    Tree Physiol; 2017 May; 37(5):604-616. PubMed ID: 28338717
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Factors promoting polyploid persistence and diversification and limiting diploid speciation during the K-Pg interlude.
    Levin DA; Soltis DE
    Curr Opin Plant Biol; 2018 Apr; 42():1-7. PubMed ID: 29107221
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Phylogenetic challenges in a recently diversified and polyploid-rich Alyssum (Brassicaceae) lineage: low divergence, reticulation, and parallel polyploid speciation.
    Španiel S; Šlenker M; Melichárková A; Caboňová M; Šandalová M; Zeisek V; Marhold K; Zozomová-Lihová J
    Evolution; 2023 Apr; 77(5):1226-1244. PubMed ID: 36820521
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Eco-genetic additivity of diploids in allopolyploid wild wheats.
    Huynh S; Broennimann O; Guisan A; Felber F; Parisod C
    Ecol Lett; 2020 Apr; 23(4):663-673. PubMed ID: 32012420
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Allopolyploid origin in Rubus (Rosaceae) inferred from nuclear granule-bound starch synthase I (GBSSI) sequences.
    Wang Y; Chen Q; Chen T; Zhang J; He W; Liu L; Luo Y; Sun B; Zhang Y; Tang HR; Wang XR
    BMC Plant Biol; 2019 Jul; 19(1):303. PubMed ID: 31291892
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Autopolyploid lineage shows climatic niche expansion but not divergence in Arabidopsis arenosa.
    Molina-Henao YF; Hopkins R
    Am J Bot; 2019 Jan; 106(1):61-70. PubMed ID: 30609009
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Patterns of abiotic niche shifts in allopolyploids relative to their progenitors.
    Blaine Marchant D; Soltis DE; Soltis PS
    New Phytol; 2016 Nov; 212(3):708-718. PubMed ID: 27399976
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Propagule pressure and the establishment of emergent polyploid populations.
    Levin DA
    Ann Bot; 2021 Jan; 127(1):1-5. PubMed ID: 33106838
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.