These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
216 related articles for article (PubMed ID: 32928104)
1. Interactions between genetics and environment shape Camelina seed oil composition. Brock JR; Scott T; Lee AY; Mosyakin SL; Olsen KM BMC Plant Biol; 2020 Sep; 20(1):423. PubMed ID: 32928104 [TBL] [Abstract][Full Text] [Related]
2. In Silico Analysis of Fatty Acid Desaturases Structures in Raboanatahiry N; Yin Y; Chen K; He J; Yu L; Li M Int J Mol Sci; 2021 Oct; 22(19):. PubMed ID: 34639198 [TBL] [Abstract][Full Text] [Related]
3. Camelina sativa: An ideal platform for the metabolic engineering and field production of industrial lipids. Bansal S; Durrett TP Biochimie; 2016 Jan; 120():9-16. PubMed ID: 26107412 [TBL] [Abstract][Full Text] [Related]
4. Accumulation of medium-chain, saturated fatty acyl moieties in seed oils of transgenic Camelina sativa. Hu Z; Wu Q; Dalal J; Vasani N; Lopez HO; Sederoff HW; Qu R PLoS One; 2017; 12(2):e0172296. PubMed ID: 28212406 [TBL] [Abstract][Full Text] [Related]
5. A fatty acid condensing enzyme from Physaria fendleri increases hydroxy fatty acid accumulation in transgenic oilseeds of Camelina sativa. Snapp AR; Kang J; Qi X; Lu C Planta; 2014 Sep; 240(3):599-610. PubMed ID: 25023632 [TBL] [Abstract][Full Text] [Related]
6. Mutagenesis of the FAE1 genes significantly changes fatty acid composition in seeds of Camelina sativa. Ozseyhan ME; Kang J; Mu X; Lu C Plant Physiol Biochem; 2018 Feb; 123():1-7. PubMed ID: 29216494 [TBL] [Abstract][Full Text] [Related]
7. Enhancing microRNA167A expression in seed decreases the α-linolenic acid content and increases seed size in Camelina sativa. Na G; Mu X; Grabowski P; Schmutz J; Lu C Plant J; 2019 Apr; 98(2):346-358. PubMed ID: 30604453 [TBL] [Abstract][Full Text] [Related]
8. Engineering Camelina sativa (L.) Crantz for enhanced oil and seed yields by combining diacylglycerol acyltransferase1 and glycerol-3-phosphate dehydrogenase expression. Chhikara S; Abdullah HM; Akbari P; Schnell D; Dhankher OP Plant Biotechnol J; 2018 May; 16(5):1034-1045. PubMed ID: 28975735 [TBL] [Abstract][Full Text] [Related]
9. Camelina seed transcriptome: a tool for meal and oil improvement and translational research. Nguyen HT; Silva JE; Podicheti R; Macrander J; Yang W; Nazarenus TJ; Nam JW; Jaworski JG; Lu C; Scheffler BE; Mockaitis K; Cahoon EB Plant Biotechnol J; 2013 Aug; 11(6):759-69. PubMed ID: 23551501 [TBL] [Abstract][Full Text] [Related]
10. Polyploid genome of Camelina sativa revealed by isolation of fatty acid synthesis genes. Hutcheon C; Ditt RF; Beilstein M; Comai L; Schroeder J; Goldstein E; Shewmaker CK; Nguyen T; De Rocher J; Kiser J BMC Plant Biol; 2010 Oct; 10():233. PubMed ID: 20977772 [TBL] [Abstract][Full Text] [Related]
11. Engineering erucic acid biosynthesis in camelina (Camelina sativa) via FAE1 gene cloning and antisense technology. Bashiri H; Kahrizi D; Salmanian AH; Rahnama H; Azadi P Cell Mol Biol (Noisy-le-grand); 2024 Jul; 70(7):243-251. PubMed ID: 39097867 [TBL] [Abstract][Full Text] [Related]
12. Redirection of metabolic flux for high levels of omega-7 monounsaturated fatty acid accumulation in camelina seeds. Nguyen HT; Park H; Koster KL; Cahoon RE; Nguyen HT; Shanklin J; Clemente TE; Cahoon EB Plant Biotechnol J; 2015 Jan; 13(1):38-50. PubMed ID: 25065607 [TBL] [Abstract][Full Text] [Related]
13. Mapping quantitative trait loci for seed traits in Camelina sativa. King K; Li H; Kang J; Lu C Theor Appl Genet; 2019 Sep; 132(9):2567-2577. PubMed ID: 31177293 [TBL] [Abstract][Full Text] [Related]
14. Camelina sativa, an oilseed at the nexus between model system and commercial crop. Malik MR; Tang J; Sharma N; Burkitt C; Ji Y; Mykytyshyn M; Bohmert-Tatarev K; Peoples O; Snell KD Plant Cell Rep; 2018 Oct; 37(10):1367-1381. PubMed ID: 29881973 [TBL] [Abstract][Full Text] [Related]
15. The coexpression of two desaturases provides an optimized reduction of saturates in camelina oil. Bengtsson JD; Wallis JG; Bai S; Browse J Plant Biotechnol J; 2023 Mar; 21(3):497-505. PubMed ID: 36382992 [TBL] [Abstract][Full Text] [Related]
16. Significant enhancement of fatty acid composition in seeds of the allohexaploid, Camelina sativa, using CRISPR/Cas9 gene editing. Jiang WZ; Henry IM; Lynagh PG; Comai L; Cahoon EB; Weeks DP Plant Biotechnol J; 2017 May; 15(5):648-657. PubMed ID: 27862889 [TBL] [Abstract][Full Text] [Related]
17. Identification of three genes encoding microsomal oleate desaturases (FAD2) from the oilseed crop Camelina sativa. Kang J; Snapp AR; Lu C Plant Physiol Biochem; 2011 Feb; 49(2):223-9. PubMed ID: 21215650 [TBL] [Abstract][Full Text] [Related]
18. Industrial protein production crops: new needs and new opportunities. Herman EM; Schmidt MA GM Crops; 2010; 1(1):2-7. PubMed ID: 21912205 [TBL] [Abstract][Full Text] [Related]
19. CRISPR/Cas9 editing of three CRUCIFERIN C homoeologues alters the seed protein profile in Camelina sativa. Lyzenga WJ; Harrington M; Bekkaoui D; Wigness M; Hegedus DD; Rozwadowski KL BMC Plant Biol; 2019 Jul; 19(1):292. PubMed ID: 31272394 [TBL] [Abstract][Full Text] [Related]
20. Constitutive or seed-specific overexpression of Arabidopsis G-protein γ subunit 3 (AGG3) results in increased seed and oil production and improved stress tolerance in Camelina sativa. Roy Choudhury S; Riesselman AJ; Pandey S Plant Biotechnol J; 2014 Jan; 12(1):49-59. PubMed ID: 24102738 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]