These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
216 related articles for article (PubMed ID: 32928104)
21. Overexpression of the Phosphatidylcholine:DiacylglycerolCholinephosphotransferase (PDCT) gene increases carbon flux toward triacylglycerol (TAG) synthesis in Camelinasativa seeds. Abdullah HM; Pang N; Chilcoat B; Shachar-Hill Y; Schnell DJ; Dhankher OP Plant Physiol Biochem; 2024 Mar; 208():108470. PubMed ID: 38422576 [TBL] [Abstract][Full Text] [Related]
22. A Specialized Diacylglycerol Acyltransferase Contributes to the Extreme Medium-Chain Fatty Acid Content of Iskandarov U; Silva JE; Kim HJ; Andersson M; Cahoon RE; Mockaitis K; Cahoon EB Plant Physiol; 2017 May; 174(1):97-109. PubMed ID: 28325847 [TBL] [Abstract][Full Text] [Related]
23. Overexpression of patatin-related phospholipase AIIIδ altered plant growth and increased seed oil content in camelina. Li M; Wei F; Tawfall A; Tang M; Saettele A; Wang X Plant Biotechnol J; 2015 Aug; 13(6):766-78. PubMed ID: 25557877 [TBL] [Abstract][Full Text] [Related]
24. Generation of transgenic plants of a potential oilseed crop Camelina sativa by Agrobacterium-mediated transformation. Lu C; Kang J Plant Cell Rep; 2008 Feb; 27(2):273-8. PubMed ID: 17899095 [TBL] [Abstract][Full Text] [Related]
25. Changes in fatty acid content and composition between wild type and CsHMA3 overexpressing Camelina sativa under heavy-metal stress. Park W; Feng Y; Kim H; Suh MC; Ahn SJ Plant Cell Rep; 2015 Sep; 34(9):1489-98. PubMed ID: 25972262 [TBL] [Abstract][Full Text] [Related]
26. Expression of a Lychee Yu XH; Cai Y; Chai J; Schwender J; Shanklin J Plant Physiol; 2019 Jul; 180(3):1351-1361. PubMed ID: 31123096 [TBL] [Abstract][Full Text] [Related]
27. Tissue-specific production of limonene in Camelina sativa with the Arabidopsis promoters of genes BANYULS and FRUITFULL. Borghi M; Xie DY Planta; 2016 Feb; 243(2):549-61. PubMed ID: 26530959 [TBL] [Abstract][Full Text] [Related]
28. Phylogenetics of Camelina Crantz. (Brassicaceae) and insights on the origin of gold-of-pleasure (Camelina sativa). Brock JR; Dönmez AA; Beilstein MA; Olsen KM Mol Phylogenet Evol; 2018 Oct; 127():834-842. PubMed ID: 29933039 [TBL] [Abstract][Full Text] [Related]
29. Paclobutrazol treatment as a potential strategy for higher seed and oil yield in field-grown Camelina sativa L. Crantz. Kumar S; Ghatty S; Satyanarayana J; Guha A; Chaitanya B; Reddy AR BMC Res Notes; 2012 Mar; 5():137. PubMed ID: 22410213 [TBL] [Abstract][Full Text] [Related]
30. Ectopic expression of cDNAs from larkspur (Consolida ajacis) for increased synthesis of gondoic acid (cis-11 eicosenoic acid) and its positional redistribution in seed triacylglycerol of Camelina sativa. Sarvas C; Puttick D; Forseille L; Cram D; Smith MA Planta; 2021 Jul; 254(2):32. PubMed ID: 34287699 [TBL] [Abstract][Full Text] [Related]
31. Proteome rebalancing in transgenic Camelina occurs within the enlarged proteome induced by β-carotene accumulation and storage protein suppression. Schmidt MA; Pendarvis K Transgenic Res; 2017 Apr; 26(2):171-186. PubMed ID: 27771868 [TBL] [Abstract][Full Text] [Related]
32. Two Acyltransferases Contribute Differently to Linolenic Acid Levels in Seed Oil. Marmon S; Sturtevant D; Herrfurth C; Chapman K; Stymne S; Feussner I Plant Physiol; 2017 Apr; 173(4):2081-2095. PubMed ID: 28235891 [TBL] [Abstract][Full Text] [Related]
33. Functional Characterization of the Effects of CsDGAT1 and CsDGAT2 on Fatty Acid Composition in Lee KR; Yeo Y; Lee J; Kim S; Im C; Kim I; Lee J; Lee SK; Suh MC; Kim HU Int J Mol Sci; 2024 Jun; 25(13):. PubMed ID: 39000052 [TBL] [Abstract][Full Text] [Related]
34. Identification of bottlenecks in the accumulation of cyclic fatty acids in camelina seed oil. Yu XH; Cahoon RE; Horn PJ; Shi H; Prakash RR; Cai Y; Hearney M; Chapman KD; Cahoon EB; Schwender J; Shanklin J Plant Biotechnol J; 2018 Apr; 16(4):926-938. PubMed ID: 28929610 [TBL] [Abstract][Full Text] [Related]
35. Systematic characterization of CsbZIP transcription factors in Camelina sativa and functional analysis of CsbZIP-A12 mediating regulation of unsaturated fatty acid-enriched oil biosynthesis. Gao H; Xue J; Yuan L; Sun Y; Song Y; Zhang C; Li R; Jia X Int J Biol Macromol; 2024 Jun; 270(Pt 1):132273. PubMed ID: 38734348 [TBL] [Abstract][Full Text] [Related]
36. Evaluation of the progeny produced by interspecific hybridization between Camelina sativa and C. microcarpa. Tepfer M; Hurel A; Tellier F; Jenczewski E Ann Bot; 2020 May; 125(6):993-1002. PubMed ID: 32055837 [TBL] [Abstract][Full Text] [Related]
37. Tailoring seed oil composition in the real world: optimising omega-3 long chain polyunsaturated fatty acid accumulation in transgenic Camelina sativa. Usher S; Han L; Haslam RP; Michaelson LV; Sturtevant D; Aziz M; Chapman KD; Sayanova O; Napier JA Sci Rep; 2017 Jul; 7(1):6570. PubMed ID: 28747792 [TBL] [Abstract][Full Text] [Related]
38. Molecular and archaeological evidence on the geographical origin of domestication for Camelina sativa. Brock JR; Ritchey MM; Olsen KM Am J Bot; 2022 Jul; 109(7):1177-1190. PubMed ID: 35716121 [TBL] [Abstract][Full Text] [Related]
39. Evaluation of Camelina sativa (L.) Crantz meal as an alternative protein source in ruminant rations. Colombini S; Broderick GA; Galasso I; Martinelli T; Rapetti L; Russo R; Reggiani R J Sci Food Agric; 2014 Mar; 94(4):736-43. PubMed ID: 24105894 [TBL] [Abstract][Full Text] [Related]