BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

251 related articles for article (PubMed ID: 32928111)

  • 1. Comparative analysis of sucrose phosphate synthase (SPS) gene family between Saccharum officinarum and Saccharum spontaneum.
    Ma P; Zhang X; Chen L; Zhao Q; Zhang Q; Hua X; Wang Z; Tang H; Yu Q; Zhang M; Ming R; Zhang J
    BMC Plant Biol; 2020 Sep; 20(1):422. PubMed ID: 32928111
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Haplotype analysis of sucrose synthase gene family in three Saccharum species.
    Zhang J; Arro J; Chen Y; Ming R
    BMC Genomics; 2013 May; 14():314. PubMed ID: 23663250
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparative structural analysis of Bru1 region homeologs in Saccharum spontaneum and S. officinarum.
    Zhang J; Sharma A; Yu Q; Wang J; Li L; Zhu L; Zhang X; Chen Y; Ming R
    BMC Genomics; 2016 Jun; 17():446. PubMed ID: 27287040
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparative Analysis of two Sugarcane Ancestors
    Xu F; He L; Gao S; Su Y; Li F; Xu L
    Int J Mol Sci; 2019 Aug; 20(15):. PubMed ID: 31387284
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Co-expression network analysis reveals transcription factors associated to cell wall biosynthesis in sugarcane.
    Ferreira SS; Hotta CT; Poelking VG; Leite DC; Buckeridge MS; Loureiro ME; Barbosa MH; Carneiro MS; Souza GM
    Plant Mol Biol; 2016 May; 91(1-2):15-35. PubMed ID: 26820137
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sucrose-phosphate phosphatase from sugarcane reveals an ancestral tandem duplication.
    Partida VGS; Dias HM; Corcino DSM; Van Sluys MA
    BMC Plant Biol; 2021 Jan; 21(1):23. PubMed ID: 33413115
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Differential expression in leaves of Saccharum genotypes contrasting in biomass production provides evidence of genes involved in carbon partitioning.
    Correr FH; Hosaka GK; Barreto FZ; Valadão IB; Balsalobre TWA; Furtado A; Henry RJ; Carneiro MS; Margarido GRA
    BMC Genomics; 2020 Sep; 21(1):673. PubMed ID: 32993494
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Functional analysis of sucrose phosphate synthase (SPS) and sucrose synthase (SS) in sugarcane (Saccharum) cultivars.
    Verma AK; Upadhyay SK; Verma PC; Solomon S; Singh SB
    Plant Biol (Stuttg); 2011 Mar; 13(2):325-32. PubMed ID: 21309979
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Expression analysis of genes associated with sucrose accumulation in sugarcane (Saccharum spp. hybrids) varieties differing in content and time of peak sucrose storage.
    Chandra A; Verma PK; Islam MN; Grisham MP; Jain R; Sharma A; Roopendra K; Singh K; Singh P; Verma I; Solomon S
    Plant Biol (Stuttg); 2015 May; 17(3):608-17. PubMed ID: 25311688
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The subgenome Saccharum spontaneum contributes to sugar accumulation in sugarcane as revealed by full-length transcriptomic analysis.
    Zhao J; Li S; Xu Y; Ahmad N; Kuang B; Feng M; Wei N; Yang X
    J Adv Res; 2023 Dec; 54():1-13. PubMed ID: 36781019
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structure, phylogeny, allelic haplotypes and expression of sucrose transporter gene families in Saccharum.
    Zhang Q; Hu W; Zhu F; Wang L; Yu Q; Ming R; Zhang J
    BMC Genomics; 2016 Feb; 17():88. PubMed ID: 26830680
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Functional analysis of the potential enzymes involved in sugar modulation in high and low sugarcane cultivars.
    Kalwade SB; Devarumath RM
    Appl Biochem Biotechnol; 2014 Feb; 172(4):1982-98. PubMed ID: 24318588
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identification and characterization of PAL genes involved in the regulation of stem development in Saccharum spontaneum L.
    Wu X; Cui Z; Li X; Yu Z; Lin P; Xue L; Khan A; Ou C; Deng Z; Zhang M; Yao W; Yu F
    BMC Genom Data; 2024 Apr; 25(1):38. PubMed ID: 38689211
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Genomic investigation of duplication, functional conservation, and divergence in the LRR-RLK Family of Saccharum.
    Ding H; Feng X; Yuan Y; Wang B; Wang Y; Zhang J
    BMC Genomics; 2024 Feb; 25(1):165. PubMed ID: 38336615
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Tissue-specific transcriptome analysis within the maturing sugarcane stalk reveals spatial regulation in the expression of cellulose synthase and sucrose transporter gene families.
    Casu RE; Rae AL; Nielsen JM; Perroux JM; Bonnett GD; Manners JM
    Plant Mol Biol; 2015 Dec; 89(6):607-28. PubMed ID: 26456093
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Spatial distribution and dynamics of sucrose metabolising enzymes in radiation induced mutants of sugarcane.
    Mirajkar SJ; Suprasanna P; Vaidya ER
    Plant Physiol Biochem; 2016 Mar; 100():85-93. PubMed ID: 26795733
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evolution and expression of the fructokinase gene family in Saccharum.
    Chen Y; Zhang Q; Hu W; Zhang X; Wang L; Hua X; Yu Q; Ming R; Zhang J
    BMC Genomics; 2017 Feb; 18(1):197. PubMed ID: 28222695
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Supply and demand: sink regulation of sugar accumulation in sugarcane.
    McCormick AJ; Watt DA; Cramer MD
    J Exp Bot; 2009; 60(2):357-64. PubMed ID: 19050062
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Genetic variability among the chloroplast genomes of sugarcane (Saccharum spp) and its wild progenitor species Saccharum spontaneum L.
    Zhu JR; Zhou H; Pan YB; Lu X
    Genet Mol Res; 2014 Jan; 13(2):3037-47. PubMed ID: 24615073
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Identification of male sterility-related genes in Saccharum officinarum and Saccharum spontaneum.
    Song J; Zhang X; Jones T; Wang ML; Ming R
    Plant Reprod; 2024 Jun; ():. PubMed ID: 38844561
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.