These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

198 related articles for article (PubMed ID: 32929085)

  • 1. Chemical entrapment and killing of insects by bacteria.
    Ho LK; Daniel-Ivad M; Jeedigunta SP; Li J; Iliadi KG; Boulianne GL; Hurd TR; Smibert CA; Nodwell JR
    Nat Commun; 2020 Sep; 11(1):4608. PubMed ID: 32929085
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Social attraction mediated by fruit flies' microbiome.
    Venu I; Durisko Z; Xu J; Dukas R
    J Exp Biol; 2014 Apr; 217(Pt 8):1346-52. PubMed ID: 24744425
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The effects of folate intake on DNA and single-carbon pathway metabolism in the fruit fly Drosophila melanogaster compared to mammals.
    Blatch SA; Stabler SP; Harrison JF
    Comp Biochem Physiol B Biochem Mol Biol; 2015 Nov; 189():34-9. PubMed ID: 26219578
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Olfactory detection of a bacterial short-chain fatty acid acts as an orexigenic signal in Drosophila melanogaster larvae.
    Depetris-Chauvin A; Galagovsky D; Chevalier C; Maniere G; Grosjean Y
    Sci Rep; 2017 Oct; 7(1):14230. PubMed ID: 29079812
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of dietary folic acid level and symbiotic folate production on fitness and development in the fruit fly Drosophila melanogaster.
    Blatch SA; Meyer KW; Harrison JF
    Fly (Austin); 2010; 4(4):312-9. PubMed ID: 20855945
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Yeast Volatomes Differentially Affect Larval Feeding in an Insect Herbivore.
    Ljunggren J; Borrero-Echeverry F; Chakraborty A; Lindblom TUT; Hedenström E; Karlsson M; Witzgall P; Bengtsson M
    Appl Environ Microbiol; 2019 Nov; 85(21):. PubMed ID: 31444202
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Drosophila melanogaster as a model to characterize fungal volatile organic compounds.
    Inamdar AA; Zaman T; Morath SU; Pu DC; Bennett JW
    Environ Toxicol; 2014 May; 29(7):829-36. PubMed ID: 23139201
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Experimental evolution of defense against a competitive mold confers reduced sensitivity to fungal toxins but no increased resistance in Drosophila larvae.
    Trienens M; Rohlfs M
    BMC Evol Biol; 2011 Jul; 11():206. PubMed ID: 21756302
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Lethality and developmental delay in Drosophila melanogaster larvae after ingestion of selected Pseudomonas fluorescens strains.
    Olcott MH; Henkels MD; Rosen KL; Walker FL; Sneh B; Loper JE; Taylor BJ
    PLoS One; 2010 Sep; 5(9):e12504. PubMed ID: 20856932
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Microbiota-Mediated Modulation of Organophosphate Insecticide Toxicity by Species-Dependent Interactions with Lactobacilli in a Drosophila melanogaster Insect Model.
    Daisley BA; Trinder M; McDowell TW; Collins SL; Sumarah MW; Reid G
    Appl Environ Microbiol; 2018 May; 84(9):. PubMed ID: 29475860
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Streptomyces Exploration: Competition, Volatile Communication and New Bacterial Behaviours.
    Jones SE; Elliot MA
    Trends Microbiol; 2017 Jul; 25(7):522-531. PubMed ID: 28245952
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Developmentally regulated volatiles geosmin and 2-methylisoborneol attract a soil arthropod to Streptomyces bacteria promoting spore dispersal.
    Becher PG; Verschut V; Bibb MJ; Bush MJ; Molnár BP; Barane E; Al-Bassam MM; Chandra G; Song L; Challis GL; Buttner MJ; Flärdh K
    Nat Microbiol; 2020 Jun; 5(6):821-829. PubMed ID: 32251369
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The ecology of the Drosophila-yeast mutualism in wineries.
    Quan AS; Eisen MB
    PLoS One; 2018; 13(5):e0196440. PubMed ID: 29768432
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Density-dependent insect-mold interactions: effects on fungal growth and spore production.
    Rohlfs M
    Mycologia; 2005; 97(5):996-1001. PubMed ID: 16596951
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Symbiotic bacteria protect wasp larvae from fungal infestation.
    Kaltenpoth M; Göttler W; Herzner G; Strohm E
    Curr Biol; 2005 Mar; 15(5):475-9. PubMed ID: 15753044
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Drosophila Food-Associated Pheromones: Effect of Experience, Genotype and Antibiotics on Larval Behavior.
    Thibert J; Farine JP; Cortot J; Ferveur JF
    PLoS One; 2016; 11(3):e0151451. PubMed ID: 26987117
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High amylose starch consumption induces obesity in Drosophila melanogaster and metformin partially prevents accumulation of storage lipids and shortens lifespan of the insects.
    Abrat OB; Storey JM; Storey KB; Lushchak VI
    Comp Biochem Physiol A Mol Integr Physiol; 2018 Jan; 215():55-62. PubMed ID: 29054808
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The secondary metabolites produced by Lactobacillus plantarum downregulate BCL-2 and BUFFY genes on breast cancer cell line and model organism Drosophila melanogaster: molecular docking approach.
    Sentürk M; Ercan F; Yalcin S
    Cancer Chemother Pharmacol; 2020 Jan; 85(1):33-45. PubMed ID: 31673827
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Symbiotic Streptomycetes provide antibiotic combination prophylaxis for wasp offspring.
    Kroiss J; Kaltenpoth M; Schneider B; Schwinger MG; Hertweck C; Maddula RK; Strohm E; Svatos A
    Nat Chem Biol; 2010 Apr; 6(4):261-3. PubMed ID: 20190763
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The nesting preference of an invasive ant is associated with the cues produced by actinobacteria in soil.
    Huang H; Ren L; Li H; Schmidt A; Gershenzon J; Lu Y; Cheng D
    PLoS Pathog; 2020 Sep; 16(9):e1008800. PubMed ID: 32913361
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.