These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 32929102)

  • 1. Engineered viral DNA polymerase with enhanced DNA amplification capacity: a proof-of-concept of isothermal amplification of damaged DNA.
    Ordóñez CD; Lechuga A; Salas M; Redrejo-Rodríguez M
    Sci Rep; 2020 Sep; 10(1):15046. PubMed ID: 32929102
    [TBL] [Abstract][Full Text] [Related]  

  • 2. DNA polymerase from temperate phage Bam35 is endowed with processive polymerization and abasic sites translesion synthesis capacity.
    Berjón-Otero M; Villar L; de Vega M; Salas M; Redrejo-Rodríguez M
    Proc Natl Acad Sci U S A; 2015 Jul; 112(27):E3476-84. PubMed ID: 26100910
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Improvement of φ29 DNA polymerase amplification performance by fusion of DNA binding motifs.
    de Vega M; Lázaro JM; Mencía M; Blanco L; Salas M
    Proc Natl Acad Sci U S A; 2010 Sep; 107(38):16506-11. PubMed ID: 20823261
    [TBL] [Abstract][Full Text] [Related]  

  • 4. DNA Polymerases for Whole Genome Amplification: Considerations and Future Directions.
    Ordóñez CD; Redrejo-Rodríguez M
    Int J Mol Sci; 2023 May; 24(11):. PubMed ID: 37298280
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In vitro evolution of phi29 DNA polymerase using isothermal compartmentalized self replication technique.
    Povilaitis T; Alzbutas G; Sukackaite R; Siurkus J; Skirgaila R
    Protein Eng Des Sel; 2016 Dec; 29(12):617-628. PubMed ID: 27672049
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Whole-genome amplification using Φ29 DNA polymerase.
    Burtt NP
    Cold Spring Harb Protoc; 2011 Jan; 2011(1):pdb.prot5552. PubMed ID: 21205852
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Whole Genome Methylation Scanning Based on phi29 Polymerase Amplification.
    Brooks R; Rose RJ; Sheahan MB; Kurdyukov S
    Biochemistry (Mosc); 2011 Sep; 76(9):999-1002. PubMed ID: 22082267
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Rolling-circle amplification of viral DNA genomes using phi29 polymerase.
    Johne R; Müller H; Rector A; van Ranst M; Stevens H
    Trends Microbiol; 2009 May; 17(5):205-11. PubMed ID: 19375325
    [TBL] [Abstract][Full Text] [Related]  

  • 9. DNA-dependent DNA polymerases.
    Kucera RB; Nichols NM
    Curr Protoc Mol Biol; 2008 Oct; Chapter 3():Unit3.5. PubMed ID: 18972387
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Deep-sea vent phage DNA polymerase specifically initiates DNA synthesis in the absence of primers.
    Zhu B; Wang L; Mitsunobu H; Lu X; Hernandez AJ; Yoshida-Takashima Y; Nunoura T; Tabor S; Richardson CC
    Proc Natl Acad Sci U S A; 2017 Mar; 114(12):E2310-E2318. PubMed ID: 28265063
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Inactivation of the 3'-5' exonuclease of the replicative T4 DNA polymerase allows translesion DNA synthesis at an abasic site.
    Tanguy Le Gac N; Delagoutte E; Germain M; Villani G
    J Mol Biol; 2004 Mar; 336(5):1023-34. PubMed ID: 15037066
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of Different Divalent Cations on the Kinetics and Fidelity of RB69 DNA Polymerase.
    Vashishtha AK; Konigsberg WH
    Biochemistry; 2016 May; 55(18):2661-70. PubMed ID: 27096230
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Getting a grip on how DNA polymerases function.
    Patel PH; Loeb LA
    Nat Struct Biol; 2001 Aug; 8(8):656-9. PubMed ID: 11473246
    [No Abstract]   [Full Text] [Related]  

  • 14. Nucleic acid isothermal amplification technologies: a review.
    Gill P; Ghaemi A
    Nucleosides Nucleotides Nucleic Acids; 2008 Mar; 27(3):224-43. PubMed ID: 18260008
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of manganese on in vitro replication of damaged DNA catalyzed by the herpes simplex virus type-1 DNA polymerase.
    Villani G; Tanguy Le Gac N; Wasungu L; Burnouf D; Fuchs RP; Boehmer PE
    Nucleic Acids Res; 2002 Aug; 30(15):3323-32. PubMed ID: 12140316
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Viral polymerases.
    Choi KH
    Adv Exp Med Biol; 2012; 726():267-304. PubMed ID: 22297518
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In vitro evolution of phi29 DNA polymerases through compartmentalized gene expression and rolling-circle replication.
    Sakatani Y; Mizuuchi R; Ichihashi N
    Protein Eng Des Sel; 2019 Dec; 32(11):481-487. PubMed ID: 32533140
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evolution of a Thermophilic Strand-Displacing Polymerase Using High-Temperature Isothermal Compartmentalized Self-Replication.
    Milligan JN; Shroff R; Garry DJ; Ellington AD
    Biochemistry; 2018 Aug; 57(31):4607-4619. PubMed ID: 29629759
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Simultaneous amplification and screening of whole plasmids using the T7 bacteriophage replisome.
    Xu Y; Kim HJ; Kays A; Rice J; Kong H
    Nucleic Acids Res; 2006 Aug; 34(13):e98. PubMed ID: 16893951
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Rapid amplification of plasmid and phage DNA using Phi 29 DNA polymerase and multiply-primed rolling circle amplification.
    Dean FB; Nelson JR; Giesler TL; Lasken RS
    Genome Res; 2001 Jun; 11(6):1095-9. PubMed ID: 11381035
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.