These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 32929139)

  • 1. Standoff pump-probe photothermal detection of hazardous chemicals.
    Sharma RC; Kumar S; Parmar A; Mann M; Prakash S; Thakur SN
    Sci Rep; 2020 Sep; 10(1):15053. PubMed ID: 32929139
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Photoacoustic remote sensing of suspicious objects for defence and forensic applications.
    Sharma RC; Kumar S; Kumar S; Mann M; Mayank ; Sharma M
    Spectrochim Acta A Mol Biomol Spectrosc; 2020 Jan; 224():117445. PubMed ID: 31382229
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ultrasensitive photoacoustic sensor based on quantum cascade laser spectroscopy.
    Kumar D; Gautam S; Kumar S; Gupta S; Srivastava HB; Thakur SN; Sharma RC
    Spectrochim Acta A Mol Biomol Spectrosc; 2017 Apr; 176():47-51. PubMed ID: 28064138
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Standoff spectroscopy of surface adsorbed chemicals.
    Van Neste CW; Senesac LR; Thundat T
    Anal Chem; 2009 Mar; 81(5):1952-6. PubMed ID: 19186935
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Vibrational spectroscopy standoff detection of explosives.
    Pacheco-Londoño LC; Ortiz-Rivera W; Primera-Pedrozo OM; Hernández-Rivera SP
    Anal Bioanal Chem; 2009 Sep; 395(2):323-35. PubMed ID: 19633965
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Standoff photoacoustic detection of explosives using quantum cascade laser and an ultrasensitive microphone.
    Chen X; Guo D; Choa FS; Wang CC; Trivedi S; Snyder AP; Ru G; Fan J
    Appl Opt; 2013 Apr; 52(12):2626-32. PubMed ID: 23669670
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Infrared photothermal imaging spectroscopy for detection of trace explosives on surfaces.
    Kendziora CA; Furstenberg R; Papantonakis M; Nguyen V; Byers J; Andrew McGill R
    Appl Opt; 2015 Nov; 54(31):F129-38. PubMed ID: 26560599
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Standoff Photoacoustic Spectroscopy of Explosives.
    Marcus LS; Holthoff EL; Pellegrino PM
    Appl Spectrosc; 2017 May; 71(5):833-838. PubMed ID: 27340220
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Standoff Detection of Oil and Powder Mixtures at 12 Meters Using a Tunable Quantum Cascade Laser-Based System with a Close Focus Telescope and Uncooled Infrared Detector.
    Carter JC; Paul PH; Ottaway JM; Haugen P; Manuel AM
    Appl Spectrosc; 2022 Jan; 76(1):19-27. PubMed ID: 34965744
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Photo-vibrational spectroscopy of solid and liquid chemicals using laser Doppler vibrometer.
    Hu Q; Lim JS; Liu H; Fu Y
    Opt Express; 2016 Aug; 24(17):19148-56. PubMed ID: 27557194
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Standoff detection of explosive substances at distances of up to 150 m.
    Mukherjee A; Von der Porten S; Patel CK
    Appl Opt; 2010 Apr; 49(11):2072-8. PubMed ID: 20390007
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Detection of multiple chemicals based on external cavity quantum cascade laser spectroscopy.
    Sun J; Ding J; Liu N; Yang G; Li J
    Spectrochim Acta A Mol Biomol Spectrosc; 2018 Feb; 191():532-538. PubMed ID: 29096120
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Standoff Mechanical Resonance Spectroscopy Based on Infrared-Sensitive Hydrogel Microcantilevers.
    Chae I; Khan MF; Song J; Kang T; Lee J; Thundat T
    Anal Chem; 2016 Oct; 88(19):9678-9684. PubMed ID: 27599117
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quartz-tuning-fork enhanced photothermal spectroscopy for ultra-high sensitive trace gas detection.
    Ma Y; He Y; Tong Y; Yu X; Tittel FK
    Opt Express; 2018 Nov; 26(24):32103-32110. PubMed ID: 30650676
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Broadband Mid-Infrared Stand-Off Reflection-Absorption Spectroscopy Using a Pulsed External Cavity Quantum Cascade Laser.
    Liu X; Chae I; Miriyala N; Lee D; Thundat T; Kim S
    Appl Spectrosc; 2017 Jul; 71(7):1494-1505. PubMed ID: 28664781
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Standoff Detection and Identification of Liquid Chemicals on a Reflective Substrate Using a Wavelength-Tunable Quantum Cascade Laser.
    Park S; Son J; Yu J; Lee J
    Sensors (Basel); 2022 Apr; 22(9):. PubMed ID: 35590860
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enhanced nanoplasmonic heating in standoff sensing of explosive residues with infrared reflection-absorption spectroscopy.
    Simin N; Park Y; Lee D; Thundat T; Kim S
    Opt Lett; 2020 Apr; 45(8):2144-2147. PubMed ID: 32287177
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nonlinear Midinfrared Photothermal Spectroscopy Using Zharov Splitting and Quantum Cascade Lasers.
    Mertiri A; Altug H; Hong MK; Mehta P; Mertz J; Ziegler LD; Erramilli S
    ACS Photonics; 2014 Aug; 1(8):696-702. PubMed ID: 25541620
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mid-Infrared Standoff Spectroscopy Using a Supercontinuum Laser with Compact Fabry-Pérot Filter Spectrometers.
    Kilgus J; Duswald K; Langer G; Brandstetter M
    Appl Spectrosc; 2018 Apr; 72(4):634-642. PubMed ID: 29164925
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Trace gas sensing based on multi-quartz-enhanced photothermal spectroscopy.
    Ma Y; Hu Y; Qiao S; He Y; Tittel FK
    Photoacoustics; 2020 Dec; 20():100206. PubMed ID: 32995269
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.