BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

256 related articles for article (PubMed ID: 32929188)

  • 1. The sustained expression of Cas9 targeting toxic RNAs reverses disease phenotypes in mouse models of myotonic dystrophy type 1.
    Batra R; Nelles DA; Roth DM; Krach F; Nutter CA; Tadokoro T; Thomas JD; Sznajder ŁJ; Blue SM; Gutierrez HL; Liu P; Aigner S; Platoshyn O; Miyanohara A; Marsala M; Swanson MS; Yeo GW
    Nat Biomed Eng; 2021 Feb; 5(2):157-168. PubMed ID: 32929188
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Genome Editing of Expanded CTG Repeats within the Human DMPK Gene Reduces Nuclear RNA Foci in the Muscle of DM1 Mice.
    Lo Scrudato M; Poulard K; Sourd C; Tomé S; Klein AF; Corre G; Huguet A; Furling D; Gourdon G; Buj-Bello A
    Mol Ther; 2019 Aug; 27(8):1372-1388. PubMed ID: 31253581
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Application of CRISPR-Cas9-Mediated Genome Editing for the Treatment of Myotonic Dystrophy Type 1.
    Marsh S; Hanson B; Wood MJA; Varela MA; Roberts TC
    Mol Ther; 2020 Dec; 28(12):2527-2539. PubMed ID: 33171139
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Efficient CRISPR/Cas9-mediated editing of trinucleotide repeat expansion in myotonic dystrophy patient-derived iPS and myogenic cells.
    Dastidar S; Ardui S; Singh K; Majumdar D; Nair N; Fu Y; Reyon D; Samara E; Gerli MFM; Klein AF; De Schrijver W; Tipanee J; Seneca S; Tulalamba W; Wang H; Chai YC; In't Veld P; Furling D; Tedesco FS; Vermeesch JR; Joung JK; Chuah MK; VandenDriessche T
    Nucleic Acids Res; 2018 Sep; 46(16):8275-8298. PubMed ID: 29947794
    [TBL] [Abstract][Full Text] [Related]  

  • 5. CRISPR/Cas9-Induced (CTG⋅CAG)
    van Agtmaal EL; André LM; Willemse M; Cumming SA; van Kessel IDG; van den Broek WJAA; Gourdon G; Furling D; Mouly V; Monckton DG; Wansink DG; Wieringa B
    Mol Ther; 2017 Jan; 25(1):24-43. PubMed ID: 28129118
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Therapeutic Genome Editing for Myotonic Dystrophy Type 1 Using CRISPR/Cas9.
    Wang Y; Hao L; Wang H; Santostefano K; Thapa A; Cleary J; Li H; Guo X; Terada N; Ashizawa T; Xia G
    Mol Ther; 2018 Nov; 26(11):2617-2630. PubMed ID: 30274788
    [TBL] [Abstract][Full Text] [Related]  

  • 7. CRISPR/Cas Applications in Myotonic Dystrophy: Expanding Opportunities.
    Raaijmakers RHL; Ripken L; Ausems CRM; Wansink DG
    Int J Mol Sci; 2019 Jul; 20(15):. PubMed ID: 31357652
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Therapeutic impact of systemic AAV-mediated RNA interference in a mouse model of myotonic dystrophy.
    Bisset DR; Stepniak-Konieczna EA; Zavaljevski M; Wei J; Carter GT; Weiss MD; Chamberlain JR
    Hum Mol Genet; 2015 Sep; 24(17):4971-83. PubMed ID: 26082468
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Impeding Transcription of Expanded Microsatellite Repeats by Deactivated Cas9.
    Pinto BS; Saxena T; Oliveira R; Méndez-Gómez HR; Cleary JD; Denes LT; McConnell O; Arboleda J; Xia G; Swanson MS; Wang ET
    Mol Cell; 2017 Nov; 68(3):479-490.e5. PubMed ID: 29056323
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Age of onset of RNA toxicity influences phenotypic severity: evidence from an inducible mouse model of myotonic dystrophy (DM1).
    Gladman JT; Mandal M; Srinivasan V; Mahadevan MS
    PLoS One; 2013; 8(9):e72907. PubMed ID: 24039817
    [TBL] [Abstract][Full Text] [Related]  

  • 11. CRISPR/Cas9-Mediated Deletion of CTG Expansions Recovers Normal Phenotype in Myogenic Cells Derived from Myotonic Dystrophy 1 Patients.
    Provenzano C; Cappella M; Valaperta R; Cardani R; Meola G; Martelli F; Cardinali B; Falcone G
    Mol Ther Nucleic Acids; 2017 Dec; 9():337-348. PubMed ID: 29246312
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Short antisense-locked nucleic acids (all-LNAs) correct alternative splicing abnormalities in myotonic dystrophy.
    Wojtkowiak-Szlachcic A; Taylor K; Stepniak-Konieczna E; Sznajder LJ; Mykowska A; Sroka J; Thornton CA; Sobczak K
    Nucleic Acids Res; 2015 Mar; 43(6):3318-31. PubMed ID: 25753670
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Systemic delivery of a Peptide-linked morpholino oligonucleotide neutralizes mutant RNA toxicity in a mouse model of myotonic dystrophy.
    Leger AJ; Mosquea LM; Clayton NP; Wu IH; Weeden T; Nelson CA; Phillips L; Roberts E; Piepenhagen PA; Cheng SH; Wentworth BM
    Nucleic Acid Ther; 2013 Apr; 23(2):109-17. PubMed ID: 23308382
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Furamidine Rescues Myotonic Dystrophy Type I Associated Mis-Splicing through Multiple Mechanisms.
    Jenquin JR; Coonrod LA; Silverglate QA; Pellitier NA; Hale MA; Xia G; Nakamori M; Berglund JA
    ACS Chem Biol; 2018 Sep; 13(9):2708-2718. PubMed ID: 30118588
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Systemic therapy in an RNA toxicity mouse model with an antisense oligonucleotide therapy targeting a non-CUG sequence within the DMPK 3'UTR RNA.
    Yadava RS; Yu Q; Mandal M; Rigo F; Bennett CF; Mahadevan MS
    Hum Mol Genet; 2020 Jun; 29(9):1440-1453. PubMed ID: 32242217
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Genome modification leads to phenotype reversal in human myotonic dystrophy type 1 induced pluripotent stem cell-derived neural stem cells.
    Xia G; Gao Y; Jin S; Subramony SH; Terada N; Ranum LP; Swanson MS; Ashizawa T
    Stem Cells; 2015 Jun; 33(6):1829-38. PubMed ID: 25702800
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cytoplasmic CUG RNA foci are insufficient to elicit key DM1 features.
    Dansithong W; Wolf CM; Sarkar P; Paul S; Chiang A; Holt I; Morris GE; Branco D; Sherwood MC; Comai L; Berul CI; Reddy S
    PLoS One; 2008; 3(12):e3968. PubMed ID: 19092997
    [TBL] [Abstract][Full Text] [Related]  

  • 18. CUGBP1 overexpression in mouse skeletal muscle reproduces features of myotonic dystrophy type 1.
    Ward AJ; Rimer M; Killian JM; Dowling JJ; Cooper TA
    Hum Mol Genet; 2010 Sep; 19(18):3614-22. PubMed ID: 20603324
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reversible model of RNA toxicity and cardiac conduction defects in myotonic dystrophy.
    Mahadevan MS; Yadava RS; Yu Q; Balijepalli S; Frenzel-McCardell CD; Bourne TD; Phillips LH
    Nat Genet; 2006 Sep; 38(9):1066-70. PubMed ID: 16878132
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Novel Drosophila model of myotonic dystrophy type 1: phenotypic characterization and genome-wide view of altered gene expression.
    Picchio L; Plantie E; Renaud Y; Poovthumkadavil P; Jagla K
    Hum Mol Genet; 2013 Jul; 22(14):2795-810. PubMed ID: 23525904
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.