These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
148 related articles for article (PubMed ID: 32929190)
1. Spermine-mediated tight sealing of the Magnaporthe oryzae appressorial pore-rice leaf surface interface. Rocha RO; Elowsky C; Pham NTT; Wilson RA Nat Microbiol; 2020 Dec; 5(12):1472-1480. PubMed ID: 32929190 [TBL] [Abstract][Full Text] [Related]
2. Evidence for a transketolase-mediated metabolic checkpoint governing biotrophic growth in rice cells by the blast fungus Magnaporthe oryzae. Fernandez J; Marroquin-Guzman M; Wilson RA PLoS Pathog; 2014 Sep; 10(9):e1004354. PubMed ID: 25188286 [TBL] [Abstract][Full Text] [Related]
3. A sensor kinase controls turgor-driven plant infection by the rice blast fungus. Ryder LS; Dagdas YF; Kershaw MJ; Venkataraman C; Madzvamuse A; Yan X; Cruz-Mireles N; Soanes DM; Oses-Ruiz M; Styles V; Sklenar J; Menke FLH; Talbot NJ Nature; 2019 Oct; 574(7778):423-427. PubMed ID: 31597961 [TBL] [Abstract][Full Text] [Related]
4. The appressorium of the rice blast fungus Magnaporthe oryzae remains mitotically active during post-penetration hyphal growth. Jenkinson CB; Jones K; Zhu J; Dorhmi S; Khang CH Fungal Genet Biol; 2017 Jan; 98():35-38. PubMed ID: 27890626 [TBL] [Abstract][Full Text] [Related]
5. Investigating the cell and developmental biology of plant infection by the rice blast fungus Magnaporthe oryzae. Eseola AB; Ryder LS; Osés-Ruiz M; Findlay K; Yan X; Cruz-Mireles N; Molinari C; Garduño-Rosales M; Talbot NJ Fungal Genet Biol; 2021 Sep; 154():103562. PubMed ID: 33882359 [TBL] [Abstract][Full Text] [Related]
6. Two independent S-phase checkpoints regulate appressorium-mediated plant infection by the rice blast fungus Magnaporthe oryzae. Osés-Ruiz M; Sakulkoo W; Littlejohn GR; Martin-Urdiroz M; Talbot NJ Proc Natl Acad Sci U S A; 2017 Jan; 114(2):E237-E244. PubMed ID: 28028232 [TBL] [Abstract][Full Text] [Related]
7. A class-II myosin is required for growth, conidiation, cell wall integrity and pathogenicity of Magnaporthe oryzae. Guo M; Tan L; Nie X; Zhang Z Virulence; 2017 Oct; 8(7):1335-1354. PubMed ID: 28448785 [TBL] [Abstract][Full Text] [Related]
8. Magnaporthe oryzae nucleoside diphosphate kinase is required for metabolic homeostasis and redox-mediated host innate immunity suppression. Rocha RO; Wilson RA Mol Microbiol; 2020 Nov; 114(5):789-807. PubMed ID: 32936940 [TBL] [Abstract][Full Text] [Related]
9. The role of glycerol in the pathogenic lifestyle of the rice blast fungus Magnaporthe oryzae. Foster AJ; Ryder LS; Kershaw MJ; Talbot NJ Environ Microbiol; 2017 Mar; 19(3):1008-1016. PubMed ID: 28165657 [TBL] [Abstract][Full Text] [Related]
10. TOR-autophagy branch signaling via Imp1 dictates plant-microbe biotrophic interface longevity. Sun G; Elowsky C; Li G; Wilson RA PLoS Genet; 2018 Nov; 14(11):e1007814. PubMed ID: 30462633 [TBL] [Abstract][Full Text] [Related]
11. NADPH oxidases regulate septin-mediated cytoskeletal remodeling during plant infection by the rice blast fungus. Ryder LS; Dagdas YF; Mentlak TA; Kershaw MJ; Thornton CR; Schuster M; Chen J; Wang Z; Talbot NJ Proc Natl Acad Sci U S A; 2013 Feb; 110(8):3179-84. PubMed ID: 23382235 [TBL] [Abstract][Full Text] [Related]
12. Cells in cells: morphogenetic and metabolic strategies conditioning rice infection by the blast fungus Magnaporthe oryzae. Fernandez J; Wilson RA Protoplasma; 2014 Jan; 251(1):37-47. PubMed ID: 23990109 [TBL] [Abstract][Full Text] [Related]
13. Two Magnaporthe appressoria-specific (MAS) proteins, MoMas3 and MoMas5, are required for suppressing host innate immunity and promoting biotrophic growth in rice cells. Gong Z; Ning N; Li Z; Xie X; Wilson RA; Liu W Mol Plant Pathol; 2022 Sep; 23(9):1290-1302. PubMed ID: 35526236 [TBL] [Abstract][Full Text] [Related]
14. The chitin deacetylase PoCda7 is involved in the pathogenicity of Pyricularia oryzae. Dai MD; Wu M; Li Y; Su ZZ; Lin FC; Liu XH Microbiol Res; 2021 Jul; 248():126749. PubMed ID: 33744788 [TBL] [Abstract][Full Text] [Related]
15. Independent genetic mechanisms mediate turgor generation and penetration peg formation during plant infection in the rice blast fungus. Park G; Bruno KS; Staiger CJ; Talbot NJ; Xu JR Mol Microbiol; 2004 Sep; 53(6):1695-707. PubMed ID: 15341648 [TBL] [Abstract][Full Text] [Related]
16. The Biology of Invasive Growth by the Rice Blast Fungus Magnaporthe oryzae. Cruz-Mireles N; Eisermann I; Garduño-Rosales M; Molinari C; Ryder LS; Tang B; Yan X; Talbot NJ Methods Mol Biol; 2021; 2356():19-40. PubMed ID: 34236674 [TBL] [Abstract][Full Text] [Related]
17. MoCDC14 is important for septation during conidiation and appressorium formation in Magnaporthe oryzae. Li C; Cao S; Zhang C; Zhang Y; Zhang Q; Xu JR; Wang C Mol Plant Pathol; 2018 Feb; 19(2):328-340. PubMed ID: 27935243 [TBL] [Abstract][Full Text] [Related]
18. The P5-type ATPase Spf1 is required for development and virulence of the rice blast fungus Pyricularia oryzae. Qu Y; Wang J; Zhu X; Dong B; Liu X; Lu J; Lin F Curr Genet; 2020 Apr; 66(2):385-395. PubMed ID: 31471638 [TBL] [Abstract][Full Text] [Related]
19. Characterization of 47 Cys2 -His2 zinc finger proteins required for the development and pathogenicity of the rice blast fungus Magnaporthe oryzae. Cao H; Huang P; Zhang L; Shi Y; Sun D; Yan Y; Liu X; Dong B; Chen G; Snyder JH; Lin F; Lu J New Phytol; 2016 Aug; 211(3):1035-51. PubMed ID: 27041000 [TBL] [Abstract][Full Text] [Related]
20. Penetration of hard substrates by a fungus employing enormous turgor pressures. Howard RJ; Ferrari MA; Roach DH; Money NP Proc Natl Acad Sci U S A; 1991 Dec; 88(24):11281-4. PubMed ID: 1837147 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]