These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
148 related articles for article (PubMed ID: 32929190)
21. GPI7-mediated glycosylphosphatidylinositol anchoring regulates appressorial penetration and immune evasion during infection of Magnaporthe oryzae. Liu C; Xing J; Cai X; Hendy A; He W; Yang J; Huang J; Peng YL; Ryder L; Chen XL Environ Microbiol; 2020 Jul; 22(7):2581-2595. PubMed ID: 32064718 [TBL] [Abstract][Full Text] [Related]
22. De-nitrosylation Coordinates Appressorium Function for Infection of the Rice Blast Fungus. Hu H; He W; Qu Z; Dong X; Ren Z; Qin M; Liu H; Zheng L; Huang J; Chen XL Adv Sci (Weinh); 2024 Jul; 11(26):e2403894. PubMed ID: 38704696 [TBL] [Abstract][Full Text] [Related]
23. Biomechanical model for appressorial design in Magnaporthe grisea. Tongen A; Goriely A; Tabor M J Theor Biol; 2006 May; 240(1):1-8. PubMed ID: 16207493 [TBL] [Abstract][Full Text] [Related]
24. Functional analysis of lipid metabolism in Magnaporthe grisea reveals a requirement for peroxisomal fatty acid beta-oxidation during appressorium-mediated plant infection. Wang ZY; Soanes DM; Kershaw MJ; Talbot NJ Mol Plant Microbe Interact; 2007 May; 20(5):475-91. PubMed ID: 17506326 [TBL] [Abstract][Full Text] [Related]
25. PLS1, a gene encoding a tetraspanin-like protein, is required for penetration of rice leaf by the fungal pathogen Magnaporthe grisea. Clergeot PH; Gourgues M; Cots J; Laurans F; Latorse MP; Pepin R; Tharreau D; Notteghem JL; Lebrun MH Proc Natl Acad Sci U S A; 2001 Jun; 98(12):6963-8. PubMed ID: 11391010 [TBL] [Abstract][Full Text] [Related]
26. Peroxisomal fission is induced during appressorium formation and is required for full virulence of the rice blast fungus. Chen XL; Shen M; Yang J; Xing Y; Chen D; Li Z; Zhao W; Zhang Y Mol Plant Pathol; 2017 Feb; 18(2):222-237. PubMed ID: 26950649 [TBL] [Abstract][Full Text] [Related]
27. GATA-Dependent Glutaminolysis Drives Appressorium Formation in Magnaporthe oryzae by Suppressing TOR Inhibition of cAMP/PKA Signaling. Marroquin-Guzman M; Wilson RA PLoS Pathog; 2015 Apr; 11(4):e1004851. PubMed ID: 25901357 [TBL] [Abstract][Full Text] [Related]
28. Genetic evidence for Wilson RA; Fernandez J; Rocha RO; Marroquin-Guzman M; Wright JD Microbiology (Reading); 2019 Nov; 165(11):1198-1202. PubMed ID: 31517594 [TBL] [Abstract][Full Text] [Related]
29. Two PAK kinase genes, CHM1 and MST20, have distinct functions in Magnaporthe grisea. Li L; Xue C; Bruno K; Nishimura M; Xu JR Mol Plant Microbe Interact; 2004 May; 17(5):547-56. PubMed ID: 15141959 [TBL] [Abstract][Full Text] [Related]
30. Skp1, a component of E3 ubiquitin ligase, is necessary for growth, sporulation, development and pathogenicity in rice blast fungus (Magnaporthe oryzae). Prakash C; Manjrekar J; Chattoo BB Mol Plant Pathol; 2016 Aug; 17(6):903-19. PubMed ID: 26575697 [TBL] [Abstract][Full Text] [Related]
31. A molecular mechanosensor for real-time visualization of appressorium membrane tension in Magnaporthe oryzae. Ryder LS; Lopez SG; Michels L; Eseola AB; Sprakel J; Ma W; Talbot NJ Nat Microbiol; 2023 Aug; 8(8):1508-1519. PubMed ID: 37474734 [TBL] [Abstract][Full Text] [Related]
32. Septin-Dependent Assembly of the Exocyst Is Essential for Plant Infection by Magnaporthe oryzae. Gupta YK; Dagdas YF; Martinez-Rocha AL; Kershaw MJ; Littlejohn GR; Ryder LS; Sklenar J; Menke F; Talbot NJ Plant Cell; 2015 Nov; 27(11):3277-89. PubMed ID: 26566920 [TBL] [Abstract][Full Text] [Related]
33. Growth in rice cells requires de novo purine biosynthesis by the blast fungus Magnaporthe oryzae. Fernandez J; Yang KT; Cornwell KM; Wright JD; Wilson RA Sci Rep; 2013; 3():2398. PubMed ID: 23928947 [TBL] [Abstract][Full Text] [Related]
34. Suppression of plant-generated reactive oxygen species is required for successful infection by the rice blast fungus. Huang K; Czymmek KJ; Caplan JL; Sweigard JA; Donofrio NM Virulence; 2011; 2(6):559-62. PubMed ID: 21971181 [TBL] [Abstract][Full Text] [Related]
35. Differences between appressoria formed by germ tubes and appressorium-like structures developed by hyphal tips in Magnaporthe oryzae. Kong LA; Li GT; Liu Y; Liu MG; Zhang SJ; Yang J; Zhou XY; Peng YL; Xu JR Fungal Genet Biol; 2013 Jul; 56():33-41. PubMed ID: 23591122 [TBL] [Abstract][Full Text] [Related]
36. Synergistic deletion of RGS1 and COS1 may reduce the pathogenicity of Magnaporthe oryzae. Na H; Bang A; Qing-Biao X; Xia Y; Hui-Min F; Hong-Li L; Chao-Zu H Arch Microbiol; 2019 Aug; 201(6):807-816. PubMed ID: 30874825 [TBL] [Abstract][Full Text] [Related]
37. MPG1, a gene encoding a fungal hydrophobin of Magnaporthe grisea, is involved in surface recognition. Beckerman JL; Ebbole DJ Mol Plant Microbe Interact; 1996 Aug; 9(6):450-6. PubMed ID: 8755621 [TBL] [Abstract][Full Text] [Related]
38. Glutamate synthase MoGlt1-mediated glutamate homeostasis is important for autophagy, virulence and conidiation in the rice blast fungus. Zhou W; Shi W; Xu XW; Li ZG; Yin CF; Peng JB; Pan S; Chen XL; Zhao WS; Zhang Y; Yang J; Peng YL Mol Plant Pathol; 2018 Mar; 19(3):564-578. PubMed ID: 28142220 [TBL] [Abstract][Full Text] [Related]
39. Chitosan inhibits septin-mediated plant infection by the rice blast fungus Magnaporthe oryzae in a protein kinase C and Nox1 NADPH oxidase-dependent manner. Lopez-Moya F; Martin-Urdiroz M; Oses-Ruiz M; Were VM; Fricker MD; Littlejohn G; Lopez-Llorca LV; Talbot NJ New Phytol; 2021 May; 230(4):1578-1593. PubMed ID: 33570748 [TBL] [Abstract][Full Text] [Related]
40. Structure-function analyses of the Pth11 receptor reveal an important role for CFEM motif and redox regulation in rice blast. Kou Y; Tan YH; Ramanujam R; Naqvi NI New Phytol; 2017 Apr; 214(1):330-342. PubMed ID: 27898176 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]