BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

223 related articles for article (PubMed ID: 32929350)

  • 1. Multiplexed non-invasive tumor imaging of glucose metabolism and receptor-ligand engagement using dark quencher FRET acceptor.
    Rudkouskaya A; Sinsuebphon N; Ochoa M; Chen SJ; Mazurkiewicz JE; Intes X; Barroso M
    Theranostics; 2020; 10(22):10309-10325. PubMed ID: 32929350
    [No Abstract]   [Full Text] [Related]  

  • 2. Quantitative imaging of receptor-ligand engagement in intact live animals.
    Rudkouskaya A; Sinsuebphon N; Ward J; Tubbesing K; Intes X; Barroso M
    J Control Release; 2018 Sep; 286():451-459. PubMed ID: 30036545
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Macroscopic Fluorescence Lifetime Imaging for Monitoring of Drug-Target Engagement.
    Ochoa M; Rudkouskaya A; Smith JT; Intes X; Barroso M
    Methods Mol Biol; 2022; 2394():837-856. PubMed ID: 35094361
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Quantification of Trastuzumab-HER2 Engagement In Vitro and In Vivo.
    Rudkouskaya A; Smith JT; Intes X; Barroso M
    Molecules; 2020 Dec; 25(24):. PubMed ID: 33348564
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fluorescence Lifetime Imaging for Quantification of Targeted Drug Delivery in Varying Tumor Microenvironments.
    Verma A; Pandey V; Sherry C; James C; Matteson K; Smith JT; Rudkouskaya A; Intes X; Barroso M
    bioRxiv; 2024 Mar; ():. PubMed ID: 38293105
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Synthesis, in vitro evaluation, and in vivo metabolism of fluor/quencher compounds containing IRDye 800CW and Black Hole Quencher-3 (BHQ-3).
    Linder KE; Metcalfe E; Nanjappan P; Arunachalam T; Ramos K; Skedzielewski TM; Marinelli ER; Tweedle MF; Nunn AD; Swenson RE
    Bioconjug Chem; 2011 Jul; 22(7):1287-97. PubMed ID: 21639144
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Non-invasive in vivo imaging of near infrared-labeled transferrin in breast cancer cells and tumors using fluorescence lifetime FRET.
    Abe K; Zhao L; Periasamy A; Intes X; Barroso M
    PLoS One; 2013; 8(11):e80269. PubMed ID: 24278268
    [TBL] [Abstract][Full Text] [Related]  

  • 8.
    Smith JT; Sinsuebphon N; Rudkouskaya A; Michalet X; Intes X; Barroso M
    bioRxiv; 2023 Apr; ():. PubMed ID: 36747671
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In vivo quantitative FRET small animal imaging: Intensity versus lifetime-based FRET.
    Smith JT; Sinsuebphon N; Rudkouskaya A; Michalet X; Intes X; Barroso M
    Biophys Rep (N Y); 2023 Jun; 3(2):100110. PubMed ID: 37251213
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparison of illumination geometry for lifetime-based measurements in whole-body preclinical imaging.
    Sinsuebphon N; Rudkouskaya A; Barroso M; Intes X
    J Biophotonics; 2018 Oct; 11(10):e201800037. PubMed ID: 29806238
    [TBL] [Abstract][Full Text] [Related]  

  • 11.
    Smith JT; Rudkouskaya A; Gao S; Gupta JM; Ulku A; Bruschini C; Charbon E; Weiss S; Barroso M; Intes X; Michalet X
    Optica; 2022 May; 9(5):532-544. PubMed ID: 35968259
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A nonfluorescent, broad-range quencher dye for Förster resonance energy transfer assays.
    Peng X; Chen H; Draney DR; Volcheck W; Schutz-Geschwender A; Olive DM
    Anal Biochem; 2009 May; 388(2):220-8. PubMed ID: 19248753
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Design strategy for a near-infrared fluorescence probe for matrix metalloproteinase utilizing highly cell permeable boron dipyrromethene.
    Myochin T; Hanaoka K; Komatsu T; Terai T; Nagano T
    J Am Chem Soc; 2012 Aug; 134(33):13730-7. PubMed ID: 22830429
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evaluation of four affibody-based near-infrared fluorescent probes for optical imaging of epidermal growth factor receptor positive tumors.
    Qi S; Miao Z; Liu H; Xu Y; Feng Y; Cheng Z
    Bioconjug Chem; 2012 Jun; 23(6):1149-56. PubMed ID: 22621238
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In vitro and in vivo phasor analysis of stoichiometry and pharmacokinetics using short-lifetime near-infrared dyes and time-gated imaging.
    Chen SJ; Sinsuebphon N; Rudkouskaya A; Barroso M; Intes X; Michalet X
    J Biophotonics; 2019 Mar; 12(3):e201800185. PubMed ID: 30421551
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Imaging Protein-Protein Interactions by Förster Resonance Energy Transfer (FRET) Microscopy in Live Cells.
    Manzella-Lapeira J; Brzostowski JA
    Curr Protoc Protein Sci; 2018 Aug; 93(1):e58. PubMed ID: 29984911
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fast fit-free analysis of fluorescence lifetime imaging via deep learning.
    Smith JT; Yao R; Sinsuebphon N; Rudkouskaya A; Un N; Mazurkiewicz J; Barroso M; Yan P; Intes X
    Proc Natl Acad Sci U S A; 2019 Nov; 116(48):24019-24030. PubMed ID: 31719196
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterization and Predictive Value of Near Infrared 2-Deoxyglucose Optical Imaging in Severe Acute Pancreatitis.
    de Oliveira C; Patel K; Mishra V; Trivedi RN; Noel P; Singh A; Yaron JR; Singh VP
    PLoS One; 2016; 11(2):e0149073. PubMed ID: 26901564
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Detection of enzyme activity in orthotopic murine breast cancer by fluorescence lifetime imaging using a fluorescence resonance energy transfer-based molecular probe.
    Solomon M; Guo K; Sudlow GP; Berezin MY; Edwards WB; Achilefu S; Akers WJ
    J Biomed Opt; 2011 Jun; 16(6):066019. PubMed ID: 21721820
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Targeted Optical Imaging of the Glucagonlike Peptide 1 Receptor Using Exendin-4-IRDye 800CW.
    Boss M; Bos D; Frielink C; Sandker G; Ekim S; Marciniak C; Pattou F; van Dam G; van Lith S; Brom M; Gotthardt M; Buitinga M
    J Nucl Med; 2020 Jul; 61(7):1066-1071. PubMed ID: 31924726
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.