These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

235 related articles for article (PubMed ID: 32929428)

  • 1. Chemiluminescence for bioimaging and therapeutics: recent advances and challenges.
    Yang M; Huang J; Fan J; Du J; Pu K; Peng X
    Chem Soc Rev; 2020 Oct; 49(19):6800-6815. PubMed ID: 32929428
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Engineering Persistent Luminescence Nanoparticles for Biological Applications: From Biosensing/Bioimaging to Theranostics.
    Sun SK; Wang HF; Yan XP
    Acc Chem Res; 2018 May; 51(5):1131-1143. PubMed ID: 29664602
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Chemiluminescent Probes Based on 1,2-Dioxetane Structures For Bioimaging.
    Wang Y; Bian Y; Chen X; Su D
    Chem Asian J; 2022 Mar; 17(6):e202200018. PubMed ID: 35088544
    [TBL] [Abstract][Full Text] [Related]  

  • 4. State-of-the-art self-luminescence: a win-win situation.
    Yang M; Zeng Z; Lam JWY; Fan J; Pu K; Tang BZ
    Chem Soc Rev; 2022 Oct; 51(21):8815-8831. PubMed ID: 36255029
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Chemiluminescent polymeric nanoprobes for tumor diagnosis: A mini review.
    Zhang X; Li C; Chen W; Wang G; Zou H; Liu H
    Front Chem; 2022; 10():1106791. PubMed ID: 36700072
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Seeking Illumination: The Path to Chemiluminescent 1,2-Dioxetanes for Quantitative Measurements and
    Haris U; Kagalwala HN; Kim YL; Lippert AR
    Acc Chem Res; 2021 Jul; 54(13):2844-2857. PubMed ID: 34110136
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hydrogen Peroxide-Activatable Nanoparticles for Luminescence Imaging and
    An H; Guo C; Li D; Liu R; Xu X; Guo J; Ding J; Li J; Chen W; Zhang J
    ACS Appl Mater Interfaces; 2020 Apr; 12(15):17230-17243. PubMed ID: 32193923
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The photodynamic effect: the comparison of chemiexcitation by luminol and phthalhydrazide.
    Bancirova M; Lasovský J
    Luminescence; 2011; 26(6):410-5. PubMed ID: 20853519
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Chemiluminescence and Bioluminescence as an Excitation Source in the Photodynamic Therapy of Cancer: A Critical Review.
    Magalhães CM; Esteves da Silva JC; Pinto da Silva L
    Chemphyschem; 2016 Aug; 17(15):2286-94. PubMed ID: 27129132
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Highly Selective and Sensitive Chemiluminescent Probe for Real-Time Monitoring of Hydrogen Peroxide in Cells and Animals.
    Ye S; Hananya N; Green O; Chen H; Zhao AQ; Shen J; Shabat D; Yang D
    Angew Chem Int Ed Engl; 2020 Aug; 59(34):14326-14330. PubMed ID: 32472602
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Porphyrins and related macrocycles: Combining photosensitization with radio- or optical-imaging for next generation theranostic agents.
    Sandland J; Malatesti N; Boyle R
    Photodiagnosis Photodyn Ther; 2018 Sep; 23():281-294. PubMed ID: 30009949
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Photoactivated drug delivery and bioimaging.
    Yang Y; Mu J; Xing B
    Wiley Interdiscip Rev Nanomed Nanobiotechnol; 2017 Mar; 9(2):. PubMed ID: 27094696
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Chemiluminescent nanomicelles for imaging hydrogen peroxide and self-therapy in photodynamic therapy.
    Chen R; Zhang L; Gao J; Wu W; Hu Y; Jiang X
    J Biomed Biotechnol; 2011; 2011():679492. PubMed ID: 21765637
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Activity-Based Optical Sensing Enabled by Self-Immolative Scaffolds: Monitoring of Release Events by Fluorescence or Chemiluminescence Output.
    Gnaim S; Shabat D
    Acc Chem Res; 2019 Oct; 52(10):2806-2817. PubMed ID: 31483607
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Recent progress in biomedical applications of persistent luminescence nanoparticles.
    Wang J; Ma Q; Wang Y; Shen H; Yuan Q
    Nanoscale; 2017 May; 9(19):6204-6218. PubMed ID: 28466913
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Near-Infrared Photodynamic Chemiluminescent Probes for Cancer Therapy and Metastasis Detection.
    Huang J; Zhang C; Wang X; Wei X; Pu K
    Angew Chem Int Ed Engl; 2023 Jun; 62(24):e202303982. PubMed ID: 37050864
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Aggregation-Induced Emission (AIE) Dots: Emerging Theranostic Nanolights.
    Feng G; Liu B
    Acc Chem Res; 2018 Jun; 51(6):1404-1414. PubMed ID: 29733571
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Self-Luminescing Theranostic Nanoreactors with Intraparticle Relayed Energy Transfer for Tumor Microenvironment Activated Imaging and Photodynamic Therapy.
    Wu M; Wu L; Li J; Zhang D; Lan S; Zhang X; Lin X; Liu G; Liu X; Liu J
    Theranostics; 2019; 9(1):20-33. PubMed ID: 30662551
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Multifunctional Two-Photon AIE Luminogens for Highly Mitochondria-Specific Bioimaging and Efficient Photodynamic Therapy.
    Zhuang W; Yang L; Ma B; Kong Q; Li G; Wang Y; Tang BZ
    ACS Appl Mater Interfaces; 2019 Jun; 11(23):20715-20724. PubMed ID: 31144501
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mitochondrion-targeting chemiluminescent ternary supramolecular assembly for in situ photodynamic therapy.
    Chen L; Chen Y; Zhou W; Li J; Zhang Y; Liu Y
    Chem Commun (Camb); 2020 Aug; 56(62):8857-8860. PubMed ID: 32638719
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.