These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 32929739)

  • 1. Phosphate-solubilising microorganisms for improved crop productivity: a critical assessment.
    Raymond NS; Gómez-Muñoz B; van der Bom FJT; Nybroe O; Jensen LS; Müller-Stöver DS; Oberson A; Richardson AE
    New Phytol; 2021 Feb; 229(3):1268-1277. PubMed ID: 32929739
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Microbial Phosphorus Solubilization and Its Potential for Use in Sustainable Agriculture.
    Alori ET; Glick BR; Babalola OO
    Front Microbiol; 2017; 8():971. PubMed ID: 28626450
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Impact of nanophos in agriculture to improve functional bacterial community and crop productivity.
    Chaudhary P; Chaudhary A; Parveen H; Rani A; Kumar G; Kumar R; Sharma A
    BMC Plant Biol; 2021 Nov; 21(1):519. PubMed ID: 34749648
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Phosphate solubilizing microbes: sustainable approach for managing phosphorus deficiency in agricultural soils.
    Sharma SB; Sayyed RZ; Trivedi MH; Gobi TA
    Springerplus; 2013; 2():587. PubMed ID: 25674415
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Plant- and microbial-based mechanisms to improve the agronomic effectiveness of phosphate rock: a review.
    Arcand MM; Schneider KD
    An Acad Bras Cienc; 2006 Dec; 78(4):791-807. PubMed ID: 17143413
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Development of a defined compost system for the study of plant-microbe interactions.
    Masters-Clark E; Shone E; Paradelo M; Hirsch PR; Clark IM; Otten W; Brennan F; Mauchline TH
    Sci Rep; 2020 May; 10(1):7521. PubMed ID: 32372006
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The role of plant-microbiome interactions in weed establishment and control.
    Trognitz F; Hackl E; Widhalm S; Sessitsch A
    FEMS Microbiol Ecol; 2016 Oct; 92(10):. PubMed ID: 27387910
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Screening of multi-faceted phosphate-solubilising bacterium from seagrass meadow and their plant growth promotion under saline stress condition.
    Saranya K; Sundaramanickam A; Manupoori S; Kanth SV
    Microbiol Res; 2022 Aug; 261():127080. PubMed ID: 35653948
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Saprotrophic soil fungi to improve phosphorus solubilisation and release: In vitro abilities of several species.
    Ceci A; Pinzari F; Russo F; Maggi O; Persiani AM
    Ambio; 2018 Jan; 47(Suppl 1):30-40. PubMed ID: 29159452
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biogas digestates affect crop P uptake and soil microbial community composition.
    Hupfauf S; Bachmann S; Fernández-Delgado Juárez M; Insam H; Eichler-Löbermann B
    Sci Total Environ; 2016 Jan; 542(Pt B):1144-54. PubMed ID: 26410342
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Accounting for soil biotic effects on soil health and crop productivity in the design of crop rotations.
    Dias T; Dukes A; Antunes PM
    J Sci Food Agric; 2015 Feb; 95(3):447-54. PubMed ID: 24408021
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Recycling of silicon-rich agro-wastes by their combined application with phosphate solubilizing microbe to solubilize the native soil phosphorus in a sub-tropical Alfisol.
    Alam K; Biswas DR; Bhattacharyya R; Das D; Suman A; Das TK; Paul RK; Ghosh A; Sarkar A; Kumar R; Chawla G
    J Environ Manage; 2022 Sep; 318():115559. PubMed ID: 35753129
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Plant growth promotion by phosphate solubilizing bacteria.
    Zaidi A; Khan MS; Ahemad M; Oves M
    Acta Microbiol Immunol Hung; 2009 Sep; 56(3):263-84. PubMed ID: 19789141
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparative measurements of arbuscular mycorrhizal fungal responses to agricultural management practices.
    Lehman RM; Osborne SL; Taheri WI; Buyer JS; Chim BK
    Mycorrhiza; 2019 May; 29(3):227-235. PubMed ID: 30868248
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Impact of genetically modified crops and their management on soil microbially mediated plant nutrient transformations.
    Motavalli PP; Kremer RJ; Fang M; Means NE
    J Environ Qual; 2004; 33(3):816-24. PubMed ID: 15224915
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Population Distribution of Phosphate-solubilizing Microorganisms in Agricultural Soil.
    Djuuna IAF; Prabawardani S; Massora M
    Microbes Environ; 2022; 37(1):. PubMed ID: 35342122
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The Form of N Supply Determines Plant Growth Promotion by P-Solubilizing Microorganisms in Maize.
    Mpanga IK; Nkebiwe PM; Kuhlmann M; Cozzolino V; Piccolo A; Geistlinger J; Berger N; Ludewig U; Neumann G
    Microorganisms; 2019 Jan; 7(2):. PubMed ID: 30699936
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Winter effect on soil microorganisms under different tillage and phosphorus management practices in eastern Canada.
    Shi Y; Lalande R; Hamel C; Ziadi N
    Can J Microbiol; 2015 May; 61(5):315-26. PubMed ID: 25776569
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Direct evidence using a controlled greenhouse study for threshold effects of soil organic matter on crop growth.
    Oldfield EE; Wood SA; Bradford MA
    Ecol Appl; 2020 Jun; 30(4):e02073. PubMed ID: 31965653
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A comprehensive synthesis unveils the mysteries of phosphate-solubilizing microbes.
    Li JT; Lu JL; Wang HY; Fang Z; Wang XJ; Feng SW; Wang Z; Yuan T; Zhang SC; Ou SN; Yang XD; Wu ZH; Du XD; Tang LY; Liao B; Shu WS; Jia P; Liang JL
    Biol Rev Camb Philos Soc; 2021 Dec; 96(6):2771-2793. PubMed ID: 34288351
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.