These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 32929827)

  • 1. Resolution enhancement of overlapping peaks of ion mobility spectrometry based on improved particle swarm optimization algorithm.
    Zhang S; Li J; Xie C; Wu Q; Yu J; Tang K
    Rapid Commun Mass Spectrom; 2021 Jan; 35(1):e8935. PubMed ID: 32929827
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An overlapping peaks separation algorithm for ion mobility spectrometry based on second-order differentiation and dynamic inertia weight particle swarm optimization algorithm.
    Gao R; Li J; Gao W; Li L; Wang X; Wu B; Wu Y; Yu J
    Rapid Commun Mass Spectrom; 2022 Jan; 36(2):e9220. PubMed ID: 34741365
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Deconvolution of overlapping peaks in ion mobility spectrometry based on a multiobjective dynamic teaching-learning-based optimization.
    Tang X; Yu J; Xie Z; Tang K; Hu S; Li J; Wu Y
    Rapid Commun Mass Spectrom; 2023 Jan; 37(1):e9379. PubMed ID: 35986906
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Two-step particle swarm optimization algorithm for effective deconvolution and resolution enhancement of various overlapping peaks.
    Ji X; Liu R; Hao J; Wang C; Li J; Gao W; Yu J; Tang K
    Rapid Commun Mass Spectrom; 2023 Feb; 37(3):e9429. PubMed ID: 36346291
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Bi-Directional Prediction of Carbon Fiber Production Using a Combination of Improved Particle Swarm Optimization and Support Vector Machine.
    Xiao C; Hao K; Ding Y
    Materials (Basel); 2014 Dec; 8(1):117-136. PubMed ID: 28787927
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Routing-Based Repair Method for Digital Microfluidic Biochips Based on an Improved Dijkstra and Improved Particle Swarm Optimization Algorithm.
    Zheng W; Shi J; Wang A; Fu P; Jiang H
    Micromachines (Basel); 2020 Nov; 11(12):. PubMed ID: 33260565
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hybrid IPSO-IAGA-BPNN algorithm-based rapid multi-objective optimization of a fully parameterized spaceborne primary mirror.
    Qin T; Guo J; Jing Z; Han P; Qi B
    Appl Opt; 2021 Apr; 60(11):3031-3043. PubMed ID: 33983197
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An improved particle swarm optimization algorithm for reliability problems.
    Wu P; Gao L; Zou D; Li S
    ISA Trans; 2011 Jan; 50(1):71-81. PubMed ID: 20850737
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evaluation of capillary liquid chromatography-electrospray ionization ion mobility spectrometry with mass spectrometry detection.
    Matz LM; Dion HM; Hill HH
    J Chromatogr A; 2002 Feb; 946(1-2):59-68. PubMed ID: 11873983
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Improved particle swarm optimization algorithm for high performance SPR sensor design.
    Han L; Xu C; Huang T; Dang X
    Appl Opt; 2021 Feb; 60(6):1753-1760. PubMed ID: 33690514
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identification of Preisach Model Parameters Based on an Improved Particle Swarm Optimization Method for Piezoelectric Actuators in Micro-Manufacturing Stages.
    Yang L; Ding B; Liao W; Li Y
    Micromachines (Basel); 2022 Apr; 13(5):. PubMed ID: 35630165
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Almost perfect sequence modulated multiplexing ion mobility spectrometry.
    Meng Q; Jia X; Zhang H; Wang Z; Liu W
    Rapid Commun Mass Spectrom; 2022 Aug; 36(16):e9329. PubMed ID: 35618651
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Theoretical evaluation of peak capacity improvements by use of liquid chromatography combined with drift tube ion mobility-mass spectrometry.
    Causon TJ; Hann S
    J Chromatogr A; 2015 Oct; 1416():47-56. PubMed ID: 26372446
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Spatial Ion Peak Compression and its Utility in Ion Mobility Spectrometry.
    Garimella SV; Ibrahim YM; Tang K; Webb IK; Baker ES; Tolmachev AV; Chen TC; Anderson GA; Smith RD
    J Am Soc Mass Spectrom; 2016 Jun; 27(6):1128-35. PubMed ID: 27052738
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterization of TATP gas phase product ion chemistry via isotope labeling experiments using ion mobility spectrometry interfaced with a triple quadrupole mass spectrometer.
    Tomlinson-Phillips J; Wooten A; Kozole J; Deline J; Beresford P; Stairs J
    Talanta; 2014 Sep; 127():152-62. PubMed ID: 24913870
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Integrated support vector regression and an improved particle swarm optimization-based model for solar radiation prediction.
    Ghazvinian H; Mousavi SF; Karami H; Farzin S; Ehteram M; Hossain MS; Fai CM; Hashim HB; Singh VP; Ros FC; Ahmed AN; Afan HA; Lai SH; El-Shafie A
    PLoS One; 2019; 14(5):e0217634. PubMed ID: 31150467
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Coulombic effects on resolution of ion mobility spectrometry and its application in online qualitative analysis.
    Zhang G; Peng S; Yang J; Cao S; Huang Q
    Anal Chim Acta; 2021 Oct; 1183():338969. PubMed ID: 34627503
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Peak-peak repulsion in ion mobility spectrometry.
    Ilbeigi V; Tabrizchi M
    Anal Chem; 2012 Apr; 84(8):3669-75. PubMed ID: 22455316
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Pressure effects on resolution in ion mobility spectrometry.
    Tabrizchi M; Rouholahnejad F
    Talanta; 2006 Mar; 69(1):87-90. PubMed ID: 18970536
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Diversity-guided Lamarckian random drift particle swarm optimization for flexible ligand docking.
    Li C; Sun J; Palade V
    BMC Bioinformatics; 2020 Jul; 21(1):286. PubMed ID: 32631216
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.