These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
112 related articles for article (PubMed ID: 32929857)
1. In vivo synthesis of monolysocardiolipin and cardiolipin by Acinetobacter baumannii phospholipase D and effect on cationic antimicrobial peptide resistance. Pfefferle K; Lopalco P; Breisch J; Siemund A; Corcelli A; Averhoff B Environ Microbiol; 2020 Dec; 22(12):5300-5308. PubMed ID: 32929857 [TBL] [Abstract][Full Text] [Related]
2. Acinetobacter baumannii Virulence Is Mediated by the Concerted Action of Three Phospholipases D. Stahl J; Bergmann H; Göttig S; Ebersberger I; Averhoff B PLoS One; 2015; 10(9):e0138360. PubMed ID: 26379240 [TBL] [Abstract][Full Text] [Related]
3. Reinforcing Lipid A Acylation on the Cell Surface of Acinetobacter baumannii Promotes Cationic Antimicrobial Peptide Resistance and Desiccation Survival. Boll JM; Tucker AT; Klein DR; Beltran AM; Brodbelt JS; Davies BW; Trent MS mBio; 2015 May; 6(3):e00478-15. PubMed ID: 25991684 [TBL] [Abstract][Full Text] [Related]
4. Identification of unique cardiolipin and monolysocardiolipin species in Acinetobacter baumannii. Lopalco P; Stahl J; Annese C; Averhoff B; Corcelli A Sci Rep; 2017 Jun; 7(1):2972. PubMed ID: 28592862 [TBL] [Abstract][Full Text] [Related]
5. Dissecting Colistin Resistance Mechanisms in Extensively Drug-Resistant Acinetobacter baumannii Clinical Isolates. Trebosc V; Gartenmann S; Tötzl M; Lucchini V; Schellhorn B; Pieren M; Lociuro S; Gitzinger M; Tigges M; Bumann D; Kemmer C mBio; 2019 Jul; 10(4):. PubMed ID: 31311879 [TBL] [Abstract][Full Text] [Related]
6. Complete genome sequence and genome-scale metabolic modelling of Acinetobacter baumannii type strain ATCC 19606. Zhu Y; Lu J; Zhao J; Zhang X; Yu HH; Velkov T; Li J Int J Med Microbiol; 2020 Apr; 310(3):151412. PubMed ID: 32081464 [TBL] [Abstract][Full Text] [Related]
8. Phenotypic changes associated with Colistin resistance due to Lipopolysaccharide loss in Acinetobacter baumannii. Carretero-Ledesma M; García-Quintanilla M; Martín-Peña R; Pulido MR; Pachón J; McConnell MJ Virulence; 2018 Dec; 9(1):930-942. PubMed ID: 29638177 [TBL] [Abstract][Full Text] [Related]
9. The role of Zur-regulated lipoprotein A in bacterial morphology, antimicrobial susceptibility, and production of outer membrane vesicles in Acinetobacter baumannii. Kim N; Kim HJ; Oh MH; Kim SY; Kim MH; Son JH; Kim SI; Shin M; Lee YC; Lee JC BMC Microbiol; 2021 Jan; 21(1):27. PubMed ID: 33461493 [TBL] [Abstract][Full Text] [Related]
10. New Mutations Involved in Colistin Resistance in Acinetobacter baumannii. Sun B; Liu H; Jiang Y; Shao L; Yang S; Chen D mSphere; 2020 Apr; 5(2):. PubMed ID: 32238571 [TBL] [Abstract][Full Text] [Related]
11. Contribution of EmrAB efflux pumps to colistin resistance in Acinetobacter baumannii. Lin MF; Lin YY; Lan CY J Microbiol; 2017 Feb; 55(2):130-136. PubMed ID: 28120193 [TBL] [Abstract][Full Text] [Related]
12. Studies on the antimicrobial activity of cecropin A-melittin hybrid peptides in colistin-resistant clinical isolates of Acinetobacter baumannii. Rodríguez-Hernández MJ; Saugar J; Docobo-Pérez F; de la Torre BG; Pachón-Ibáñez ME; García-Curiel A; Fernández-Cuenca F; Andreu D; Rivas L; Pachón J J Antimicrob Chemother; 2006 Jul; 58(1):95-100. PubMed ID: 16636085 [TBL] [Abstract][Full Text] [Related]
13. Acinetobacter baumannii virulence is enhanced in Galleria mellonella following biofilm adaptation. Wand ME; Bock LJ; Turton JF; Nugent PG; Sutton JM J Med Microbiol; 2012 Apr; 61(Pt 4):470-477. PubMed ID: 22194338 [TBL] [Abstract][Full Text] [Related]
14. The secretome of Acinetobacter baumannii ATCC 17978 type II secretion system reveals a novel plasmid encoded phospholipase that could be implicated in lung colonization. Elhosseiny NM; El-Tayeb OM; Yassin AS; Lory S; Attia AS Int J Med Microbiol; 2016 Dec; 306(8):633-641. PubMed ID: 27713027 [TBL] [Abstract][Full Text] [Related]
15. Lipopolysaccharide loss produces partial colistin dependence and collateral sensitivity to azithromycin, rifampicin and vancomycin in Acinetobacter baumannii. García-Quintanilla M; Carretero-Ledesma M; Moreno-Martínez P; Martín-Peña R; Pachón J; McConnell MJ Int J Antimicrob Agents; 2015 Dec; 46(6):696-702. PubMed ID: 26391380 [TBL] [Abstract][Full Text] [Related]
16. Sub-MIC effects of a proline-rich antibacterial peptide on clinical isolates of Acinetobacter baumannii. Dolzani L; Milan A; Scocchi M; Lagatolla C; Bressan R; Benincasa M J Med Microbiol; 2019 Aug; 68(8):1253-1265. PubMed ID: 31215857 [TBL] [Abstract][Full Text] [Related]
17. In vivo activity of co-trimoxazole combined with colistin against Acinetobacter baumannii producing OXA-23 in a Galleria mellonella model. Khalil MAF; Moawad SS; Hefzy EM J Med Microbiol; 2019 Jan; 68(1):52-59. PubMed ID: 30422109 [TBL] [Abstract][Full Text] [Related]
18. The role of the type VI secretion system vgrG gene in the virulence and antimicrobial resistance of Acinetobacter baumannii ATCC 19606. Wang J; Zhou Z; He F; Ruan Z; Jiang Y; Hua X; Yu Y PLoS One; 2018; 13(2):e0192288. PubMed ID: 29394284 [TBL] [Abstract][Full Text] [Related]
19. In vitro activity of several antimicrobial peptides against colistin-susceptible and colistin-resistant Acinetobacter baumannii. Vila-Farres X; Garcia de la Maria C; López-Rojas R; Pachón J; Giralt E; Vila J Clin Microbiol Infect; 2012 Apr; 18(4):383-7. PubMed ID: 21672084 [TBL] [Abstract][Full Text] [Related]
20. Genetic and virulence characterization of colistin-resistant and colistin-sensitive A. baumannii clinical isolates. Leite GC; Stabler RA; Neves P; Perdigão Neto LV; Ruedas Martins RC; Rizek C; Rossi F; Levin AS; Costa SF Diagn Microbiol Infect Dis; 2019 Sep; 95(1):99-101. PubMed ID: 31178071 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]