These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

401 related articles for article (PubMed ID: 32929889)

  • 41. Co/N-Doped hierarchical porous carbon as an efficient oxygen electrocatalyst for rechargeable Zn-air battery.
    Zhou W; Liu Y; Liu H; Wu D; Zhang G; Jiang J
    RSC Adv; 2021 Apr; 11(26):15753-15761. PubMed ID: 35481184
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Mn, N, P-tridoped bamboo-like carbon nanotubes decorated with ultrafine Co
    Han Z; Feng JJ; Yao YQ; Wang ZG; Zhang L; Wang AJ
    J Colloid Interface Sci; 2021 May; 590():330-340. PubMed ID: 33548616
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Co
    Liu X; Wu J; Luo Z; Liu P; Tian Y; Wang X; Li H
    ACS Appl Mater Interfaces; 2023 Feb; ():. PubMed ID: 36749108
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Ultrafine iron-cobalt nanoparticles embedded in nitrogen-doped porous carbon matrix for oxygen reduction reaction and zinc-air batteries.
    Zhong B; Zhang L; Yu J; Fan K
    J Colloid Interface Sci; 2019 Jun; 546():113-121. PubMed ID: 30904687
    [TBL] [Abstract][Full Text] [Related]  

  • 45. NiCo
    Gangadharan PK; Bhange SN; Kabeer N; Illathvalappil R; Kurungot S
    Nanoscale Adv; 2019 Aug; 1(8):3243-3251. PubMed ID: 36133614
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Highly active and durable core-corona structured bifunctional catalyst for rechargeable metal-air battery application.
    Chen Z; Yu A; Higgins D; Li H; Wang H; Chen Z
    Nano Lett; 2012 Apr; 12(4):1946-52. PubMed ID: 22372510
    [TBL] [Abstract][Full Text] [Related]  

  • 47. A metal-free bifunctional electrocatalyst for oxygen reduction and oxygen evolution reactions.
    Zhang J; Zhao Z; Xia Z; Dai L
    Nat Nanotechnol; 2015 May; 10(5):444-52. PubMed ID: 25849787
    [TBL] [Abstract][Full Text] [Related]  

  • 48. N,S-Codoped hierarchical porous carbon spheres embedded with cobalt nanoparticles as efficient bifunctional oxygen electrocatalysts for rechargeable zinc-air batteries.
    Zhu X; Dai J; Li L; Wu Z; Chen S
    Nanoscale; 2019 Nov; 11(44):21302-21310. PubMed ID: 31670323
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Nitrogen-doped graphene/carbon nanotube hybrids: in situ formation on bifunctional catalysts and their superior electrocatalytic activity for oxygen evolution/reduction reaction.
    Tian GL; Zhao MQ; Yu D; Kong XY; Huang JQ; Zhang Q; Wei F
    Small; 2014 Jun; 10(11):2251-9. PubMed ID: 24574006
    [TBL] [Abstract][Full Text] [Related]  

  • 50. A Bifunctional Hybrid Electrocatalyst for Oxygen Reduction and Evolution: Cobalt Oxide Nanoparticles Strongly Coupled to B,N-Decorated Graphene.
    Tong Y; Chen P; Zhou T; Xu K; Chu W; Wu C; Xie Y
    Angew Chem Int Ed Engl; 2017 Jun; 56(25):7121-7125. PubMed ID: 28523861
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Co-modified polyoxovanadoborates derived Co/BN-CNT/VN based bifunctional electrocatalysts for rechargeable zinc-air batteries.
    Zheng H; Zhong J; Liu X; Zhu Y; Hou B; Zhao L; Sun C; Wang X; Su Z
    J Colloid Interface Sci; 2023 Mar; 634():675-683. PubMed ID: 36563424
    [TBL] [Abstract][Full Text] [Related]  

  • 52. A hybrid transition metal nanocrystal-embedded graphitic carbon nitride nanosheet system as a superior oxygen electrocatalyst for rechargeable Zn-air batteries.
    Niu WJ; He JZ; Wang YP; Sun QQ; Liu WW; Zhang LY; Liu MC; Liu MJ; Chueh YL
    Nanoscale; 2020 Oct; 12(38):19644-19654. PubMed ID: 32966500
    [TBL] [Abstract][Full Text] [Related]  

  • 53. A Controllable Dual Interface Engineering Concept for Rational Design of Efficient Bifunctional Electrocatalyst for Zinc-Air Batteries.
    Lu Q; Zou X; Bu Y; Liao K; Zhou W; Shao Z
    Small; 2022 Jan; 18(4):e2105604. PubMed ID: 34837318
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Metal-Organic Frameworks (MOFs) Derived Materials Used in Zn-Air Battery.
    Song D; Hu C; Gao Z; Yang B; Li Q; Zhan X; Tong X; Tian J
    Materials (Basel); 2022 Aug; 15(17):. PubMed ID: 36079218
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Enhanced activity towards oxygen electrocatalysis for rechargeable Zn-air batteries by alloying Fe and Co in N-doped carbon.
    Yu F; Ying Q; Ni S; Li C; Xue D; Yang Y
    Dalton Trans; 2021 Nov; 50(44):16185-16190. PubMed ID: 34723297
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Atomic layer deposited nickel sulfide for bifunctional oxygen evolution/reduction electrocatalysis and zinc-air batteries.
    Yan S; Li H; Zhu J; Xiong W; Lei R; Wang X
    Nanotechnology; 2021 Apr; 32(27):. PubMed ID: 33770782
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Co Nanoislands Rooted on Co-N-C Nanosheets as Efficient Oxygen Electrocatalyst for Zn-Air Batteries.
    Yu P; Wang L; Sun F; Xie Y; Liu X; Ma J; Wang X; Tian C; Li J; Fu H
    Adv Mater; 2019 Jul; 31(30):e1901666. PubMed ID: 31169937
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Isolated transition metal nanoparticles anchored on N-doped carbon nanotubes as scalable bifunctional electrocatalysts for efficient Zn-air batteries.
    Zhang B; Wu M; Zhang L; Xu Y; Hou W; Guo H; Wang L
    J Colloid Interface Sci; 2023 Jan; 629(Pt A):640-648. PubMed ID: 36088706
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Growth of carbon nanotubes over carbon nanofibers catalyzed by bimetallic alloy nanoparticles as a bifunctional electrode for Zn-air batteries.
    Aziz I; Chen X; Hu X; Angela Zhang W; Awan RJ; Rauf A; Arshad SN
    RSC Adv; 2023 Apr; 13(17):11591-11599. PubMed ID: 37063738
    [TBL] [Abstract][Full Text] [Related]  

  • 60. MnO/N-Doped Mesoporous Carbon as Advanced Oxygen Reduction Reaction Electrocatalyst for Zinc-Air Batteries.
    Ding J; Ji S; Wang H; Brett DJL; Pollet BG; Wang R
    Chemistry; 2019 Feb; 25(11):2868-2876. PubMed ID: 30548500
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 21.