BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 32930314)

  • 1. Stabilization of proteins embedded in sugars and water as studied by dielectric spectroscopy.
    Olsson C; Zangana R; Swenson J
    Phys Chem Chem Phys; 2020 Sep; 22(37):21197-21207. PubMed ID: 32930314
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparison of Sucrose and Trehalose for Protein Stabilization Using Differential Scanning Calorimetry.
    Jonsson O; Lundell A; Rosell J; You S; Ahlgren K; Swenson J
    J Phys Chem B; 2024 May; 128(20):4922-4930. PubMed ID: 38733344
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dielectric studies on molecular dynamics of two important disaccharides: sucrose and trehalose.
    Kaminski K; Adrjanowicz K; Zakowiecki D; Kaminska E; Wlodarczyk P; Paluch M; Pilch J; Tarnacka M
    Mol Pharm; 2012 Jun; 9(6):1559-69. PubMed ID: 22553901
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Role of solvent for the dynamics and the glass transition of proteins.
    Jansson H; Bergman R; Swenson J
    J Phys Chem B; 2011 Apr; 115(14):4099-109. PubMed ID: 21425816
    [TBL] [Abstract][Full Text] [Related]  

  • 5. "Water Association" Band in Saccharide Amorphous Matrices: Role of Residual Water on Bioprotection.
    Giuffrida S; Cupane A; Cottone G
    Int J Mol Sci; 2021 Mar; 22(5):. PubMed ID: 33801421
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Implications of global and local mobility in amorphous sucrose and trehalose as determined by differential scanning calorimetry.
    Dranca I; Bhattacharya S; Vyazovkin S; Suryanarayanan R
    Pharm Res; 2009 May; 26(5):1064-72. PubMed ID: 19130185
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Distinct effects of sucrose and trehalose on protein stability during supercritical fluid drying and freeze-drying.
    Jovanović N; Bouchard A; Hofland GW; Witkamp GJ; Crommelin DJ; Jiskoot W
    Eur J Pharm Sci; 2006 Mar; 27(4):336-45. PubMed ID: 16338123
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A comparative study of carboxy myoglobin in saccharide-water systems by molecular dynamics simulation.
    Cottone G
    J Phys Chem B; 2007 Apr; 111(13):3563-9. PubMed ID: 17388507
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Molecular dynamics simulation of sucrose- and trehalose-coated carboxy-myoglobin.
    Cottone G; Giuffrida S; Ciccotti G; Cordone L
    Proteins; 2005 May; 59(2):291-302. PubMed ID: 15723350
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of pH, counter ion, and phosphate concentration on the glass transition temperature of freeze-dried sugar-phosphate mixtures.
    Ohtake S; Schebor C; Palecek SP; de Pablo JJ
    Pharm Res; 2004 Sep; 21(9):1615-21. PubMed ID: 15497687
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dynamical behavior of highly concentrated trehalose water solutions: a dielectric spectroscopy study.
    Pagnotta SE; Alegría A; Colmenero J
    Phys Chem Chem Phys; 2012 Mar; 14(9):2991-6. PubMed ID: 22281784
    [TBL] [Abstract][Full Text] [Related]  

  • 12. How homogeneous are the trehalose, maltose, and sucrose water solutions? An insight from molecular dynamics simulations.
    Lerbret A; Bordat P; Affouard F; Descamps M; Migliardo F
    J Phys Chem B; 2005 Jun; 109(21):11046-57. PubMed ID: 16852346
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Thermal aggregation of bovine serum albumin in trehalose and sucrose aqueous solutions.
    Panzica M; Emanuele A; Cordone L
    J Phys Chem B; 2012 Oct; 116(39):11829-36. PubMed ID: 22845790
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Myoglobin embedded in saccharide amorphous matrices: water-dependent domains evidenced by small angle X-ray scattering.
    Longo A; Giuffrida S; Cottone G; Cordone L
    Phys Chem Chem Phys; 2010 Jul; 12(25):6852-8. PubMed ID: 20463993
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Stabilizing effect of four types of disaccharide on the enzymatic activity of freeze-dried lactate dehydrogenase: step by step evaluation from freezing to storage.
    Kawai K; Suzuki T
    Pharm Res; 2007 Oct; 24(10):1883-90. PubMed ID: 17486434
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The relationship between protein aggregation and molecular mobility below the glass transition temperature of lyophilized formulations containing a monoclonal antibody.
    Duddu SP; Zhang G; Dal Monte PR
    Pharm Res; 1997 May; 14(5):596-600. PubMed ID: 9165529
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Measurement of the kinetics of protein unfolding in viscous systems and implications for protein stability in freeze-drying.
    Tang XC; Pikal MJ
    Pharm Res; 2005 Jul; 22(7):1176-85. PubMed ID: 16028019
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Protein thermal denaturation and matrix glass transition in different protein-trehalose-water systems.
    Bellavia G; Giuffrida S; Cottone G; Cupane A; Cordone L
    J Phys Chem B; 2011 May; 115(19):6340-6. PubMed ID: 21488647
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Water vapor absorption into amorphous sucrose-poly(vinyl pyrrolidone) and trehalose-poly(vinyl pyrrolidone) mixtures.
    Zhang J; Zografi G
    J Pharm Sci; 2001 Sep; 90(9):1375-85. PubMed ID: 11745790
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterization of dynamics in complex lyophilized formulations: II. Analysis of density variations in terms of glass dynamics and comparisons with global mobility, fast dynamics, and Positron Annihilation Lifetime Spectroscopy (PALS).
    Chieng N; Cicerone MT; Zhong Q; Liu M; Pikal MJ
    Eur J Pharm Biopharm; 2013 Oct; 85(2):197-206. PubMed ID: 23623797
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.