These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 32930381)

  • 1. Anatomical and genetic bases underlying the convergent evolution of fleshy and dry dehiscent fruits in
    Hernández-Ciro N; Pabón-Mora N
    Int J Dev Biol; 2021; 65(4-5-6):301-311. PubMed ID: 32930381
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evolution of genes associated with gynoecium patterning and fruit development in Solanaceae.
    Ortiz-Ramírez CI; Plata-Arboleda S; Pabón-Mora N
    Ann Bot; 2018 May; 121(6):1211-1230. PubMed ID: 29471367
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparative anatomical and developmental analysis of dry and fleshy fruits of Solanaceae.
    Pabón-Mora N; Litt A
    Am J Bot; 2011 Sep; 98(9):1415-36. PubMed ID: 21875970
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Expression and function of the bHLH genes ALCATRAZ and SPATULA in selected Solanaceae species.
    Ortiz-Ramírez CI; Giraldo MA; Ferrándiz C; Pabón-Mora N
    Plant J; 2019 Aug; 99(4):686-702. PubMed ID: 31009131
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evidence that an evolutionary transition from dehiscent to indehiscent fruits in Lepidium (Brassicaceae) was caused by a change in the control of valve margin identity genes.
    Mühlhausen A; Lenser T; Mummenhoff K; Theißen G
    Plant J; 2013 Mar; 73(5):824-35. PubMed ID: 23173897
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evolution and Diversification of
    Maheepala DC; Emerling CA; Rajewski A; Macon J; Strahl M; Pabón-Mora N; Litt A
    Front Plant Sci; 2019; 10():43. PubMed ID: 30846991
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evolution of fruit development genes in flowering plants.
    Pabón-Mora N; Wong GK; Ambrose BA
    Front Plant Sci; 2014; 5():300. PubMed ID: 25018763
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Morphological and Molecular Characterization of Orchid Fruit Development.
    Dirks-Mulder A; Ahmed I; Uit Het Broek M; Krol L; Menger N; Snier J; van Winzum A; de Wolf A; Van't Wout M; Zeegers JJ; Butôt R; Heijungs R; van Heuven BJ; Kruizinga J; Langelaan R; Smets EF; Star W; Bemer M; Gravendeel B
    Front Plant Sci; 2019; 10():137. PubMed ID: 30838009
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparative anatomy and genetic bases of fruit development in selected Rubiaceae (Gentianales).
    Salazar-Duque H; Alzate JF; Urrea Trujillo A; Ferrándiz C; Pabón-Mora N
    Am J Bot; 2021 Oct; 108(10):1838-1860. PubMed ID: 34699609
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Angiosperm-wide analysis of fruit and ovary evolution aided by a new nuclear phylogeny supports association of the same ovary type with both dry and fleshy fruits.
    Xiang Y; Zhang T; Zhao Y; Dong H; Chen H; Hu Y; Huang CH; Xiang J; Ma H
    J Integr Plant Biol; 2024 Feb; 66(2):228-251. PubMed ID: 38351714
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biosystematic studies of some Egyptian species of Cestrum (Solanaceae).
    El-Demerdash MM; El-Sayed AS; Georg NM; Abou-Elnour A; Nosier H
    Mol Biol Rep; 2021 May; 48(5):4497-4515. PubMed ID: 34101109
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The study of a SPATULA-like bHLH transcription factor expressed during peach (Prunus persica) fruit development.
    Tani E; Tsaballa A; Stedel C; Kalloniati C; Papaefthimiou D; Polidoros A; Darzentas N; Ganopoulos I; Flemetakis E; Katinakis P; Tsaftaris A
    Plant Physiol Biochem; 2011 Jun; 49(6):654-63. PubMed ID: 21324706
    [TBL] [Abstract][Full Text] [Related]  

  • 13. SPATULA and ALCATRAZ, are partially redundant, functionally diverging bHLH genes required for Arabidopsis gynoecium and fruit development.
    Groszmann M; Paicu T; Alvarez JP; Swain SM; Smyth DR
    Plant J; 2011 Dec; 68(5):816-29. PubMed ID: 21801252
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Lepidium as a model system for studying the evolution of fruit development in Brassicaceae.
    Mummenhoff K; Polster A; Mühlhausen A; Theissen G
    J Exp Bot; 2009; 60(5):1503-13. PubMed ID: 19052256
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Anatomy of fleshy fruits in the monocots.
    Thadeo M; Hampilos KE; Stevenson DW
    Am J Bot; 2015 Nov; 102(11):1757-79. PubMed ID: 26507114
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A highly resolved nuclear phylogeny uncovers strong phylogenetic conservatism and correlated evolution of fruit color and size in Solanum L.
    Messeder JVS; Carlo TA; Zhang G; Tovar JD; Arana C; Huang J; Huang CH; Ma H
    New Phytol; 2024 Jul; 243(2):765-780. PubMed ID: 38798267
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Two faces of Solanaceae telomeres: a comparison between Nicotiana and Cestrum telomeres and telomere-binding proteins.
    Peska V; Sýkorová E; Fajkus J
    Cytogenet Genome Res; 2008; 122(3-4):380-7. PubMed ID: 19188709
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evolution of the
    Zumajo-Cardona C; Ambrose BA; Pabón-Mora N
    Evodevo; 2017; 8():5. PubMed ID: 28331573
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparative transcriptomics identifies candidate genes involved in the evolutionary transition from dehiscent to indehiscent fruits in Lepidium (Brassicaceae).
    Gramzow L; Klupsch K; Fernández-Pozo N; Hölzer M; Marz M; Rensing SA; Theißen G
    BMC Plant Biol; 2022 Jul; 22(1):340. PubMed ID: 35836106
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterisation of an unusual telomere motif (TTTTTTAGGG)n in the plant Cestrum elegans (Solanaceae), a species with a large genome.
    Peška V; Fajkus P; Fojtová M; Dvořáčková M; Hapala J; Dvořáček V; Polanská P; Leitch AR; Sýkorová E; Fajkus J
    Plant J; 2015 May; 82(4):644-54. PubMed ID: 25828846
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.