These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 32930383)

  • 41. DLX5 positions the neural crest and preplacode region at the border of the neural plate.
    McLarren KW; Litsiou A; Streit A
    Dev Biol; 2003 Jul; 259(1):34-47. PubMed ID: 12812786
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Initiation of olfactory placode development and neurogenesis is blocked in mice lacking both Six1 and Six4.
    Chen B; Kim EH; Xu PX
    Dev Biol; 2009 Feb; 326(1):75-85. PubMed ID: 19027001
    [TBL] [Abstract][Full Text] [Related]  

  • 43. The telencephalic vesicles are innervated by olfactory placode-derived cells: a possible mechanism to induce neocortical development.
    De Carlos JA; López-Mascaraque L; Valverde F
    Neuroscience; 1995 Oct; 68(4):1167-78. PubMed ID: 8544990
    [TBL] [Abstract][Full Text] [Related]  

  • 44. FGF signaling through FGFR1 is required for olfactory bulb morphogenesis.
    Hébert JM; Lin M; Partanen J; Rossant J; McConnell SK
    Development; 2003 Mar; 130(6):1101-11. PubMed ID: 12571102
    [TBL] [Abstract][Full Text] [Related]  

  • 45. A gene regulatory network underlying the formation of pre-placodal ectoderm in Xenopus laevis.
    Maharana SK; Schlosser G
    BMC Biol; 2018 Jul; 16(1):79. PubMed ID: 30012125
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Differential distribution of competence for panplacodal and neural crest induction to non-neural and neural ectoderm.
    Pieper M; Ahrens K; Rink E; Peter A; Schlosser G
    Development; 2012 Mar; 139(6):1175-87. PubMed ID: 22318231
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Expression of L1 and N-CAM cell adhesion molecules during development of the mouse olfactory system.
    Miragall F; Kadmon G; Schachner M
    Dev Biol; 1989 Oct; 135(2):272-86. PubMed ID: 2776969
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Identification of two distinct progenitor populations in the lateral ganglionic eminence: implications for striatal and olfactory bulb neurogenesis.
    Stenman J; Toresson H; Campbell K
    J Neurosci; 2003 Jan; 23(1):167-74. PubMed ID: 12514213
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Vertebrate cranial placodes as evolutionary innovations--the ancestor's tale.
    Schlosser G
    Curr Top Dev Biol; 2015; 111():235-300. PubMed ID: 25662263
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Foxi3 is necessary for the induction of the chick otic placode in response to FGF signaling.
    Khatri SB; Edlund RK; Groves AK
    Dev Biol; 2014 Jul; 391(2):158-69. PubMed ID: 24780628
    [TBL] [Abstract][Full Text] [Related]  

  • 51. The mouse Foxi3 transcription factor is necessary for the development of posterior placodes.
    Birol O; Ohyama T; Edlund RK; Drakou K; Georgiades P; Groves AK
    Dev Biol; 2016 Jan; 409(1):139-151. PubMed ID: 26550799
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Incorporation of 3H-thymidine in telencephalic structures of the vomeronasal and olfactory systems of embryonic garter snakes.
    Holtzman DA; Halpern M
    J Comp Neurol; 1991 Feb; 304(3):450-66. PubMed ID: 2022759
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Shared evolutionary origin of vertebrate neural crest and cranial placodes.
    Horie R; Hazbun A; Chen K; Cao C; Levine M; Horie T
    Nature; 2018 Aug; 560(7717):228-232. PubMed ID: 30069052
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Clonal analyses in the anterior pre-placodal region: implications for the early lineage bias of placodal progenitors.
    Bhattacharyya S; Bronner ME
    Int J Dev Biol; 2013; 57(9-10):753-7. PubMed ID: 24307294
    [TBL] [Abstract][Full Text] [Related]  

  • 55. The epigenetic modifier DNMT3A is necessary for proper otic placode formation.
    Roellig D; Bronner ME
    Dev Biol; 2016 Mar; 411(2):294-300. PubMed ID: 26826496
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Gonadotropin-releasing hormone (GnRH) cells arise from cranial neural crest and adenohypophyseal regions of the neural plate in the zebrafish, Danio rerio.
    Whitlock KE; Wolf CD; Boyce ML
    Dev Biol; 2003 May; 257(1):140-52. PubMed ID: 12710963
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Evolution of neural crest and placodes: amphioxus as a model for the ancestral vertebrate?
    Holland LZ; Holland ND
    J Anat; 2001; 199(Pt 1-2):85-98. PubMed ID: 11523831
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Modulation of zebrafish pitx3 expression in the primordia of the pituitary, lens, olfactory epithelium and cranial ganglia by hedgehog and nodal signaling.
    Zilinski CA; Shah R; Lane ME; Jamrich M
    Genesis; 2005 Jan; 41(1):33-40. PubMed ID: 15645439
    [TBL] [Abstract][Full Text] [Related]  

  • 59. FGF dependent regulation of Zfhx1b gene expression promotes the formation of definitive neural stem cells in the mouse anterior neurectoderm.
    Dang LT; Tropepe V
    Neural Dev; 2010 May; 5():13. PubMed ID: 20459606
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Insights Into the Early Gene Regulatory Network Controlling Neural Crest and Placode Fate Choices at the Neural Border.
    Seal S; Monsoro-Burq AH
    Front Physiol; 2020; 11():608812. PubMed ID: 33324244
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.