These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 32930578)

  • 1. Mining New Plipastatins and Increasing the Total Yield Using CRISPR/Cas9 in Genome-Modified
    Zou D; Maina SW; Zhang F; Yan Z; Ding L; Shao Y; Xin Z
    J Agric Food Chem; 2020 Oct; 68(41):11358-11367. PubMed ID: 32930578
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Plipastatin and surfactin coproduction by Bacillus subtilis pB2-L and their effects on microorganisms.
    Gao L; Han J; Liu H; Qu X; Lu Z; Bie X
    Antonie Van Leeuwenhoek; 2017 Aug; 110(8):1007-1018. PubMed ID: 28477175
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Construction and description of a constitutive plipastatin mono-producing Bacillus subtilis.
    Vahidinasab M; Lilge L; Reinfurt A; Pfannstiel J; Henkel M; Morabbi Heravi K; Hausmann R
    Microb Cell Fact; 2020 Nov; 19(1):205. PubMed ID: 33167976
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Clone of plipastatin biosynthetic gene cluster by transformation-associated recombination technique and high efficient expression in model organism Bacillus subtilis.
    Hu Y; Nan F; Maina SW; Guo J; Wu S; Xin Z
    J Biotechnol; 2018 Dec; 288():1-8. PubMed ID: 30343036
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of pps disruption and constitutive expression of srfA on surfactin productivity, spreading and antagonistic properties of Bacillus subtilis 168 derivatives.
    Coutte F; Leclère V; Béchet M; Guez JS; Lecouturier D; Chollet-Imbert M; Dhulster P; Jacques P
    J Appl Microbiol; 2010 Aug; 109(2):480-491. PubMed ID: 20148996
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Scarless Genomic Point Mutation to Construct a
    Jeong DE; So Y; Lim H; Park SH; Choi SK
    J Microbiol Biotechnol; 2018 Jun; 28(6):1030-1036. PubMed ID: 29642284
    [No Abstract]   [Full Text] [Related]  

  • 7. The genes degQ, pps, and lpa-8 (sfp) are responsible for conversion of Bacillus subtilis 168 to plipastatin production.
    Tsuge K; Ano T; Hirai M; Nakamura Y; Shoda M
    Antimicrob Agents Chemother; 1999 Sep; 43(9):2183-92. PubMed ID: 10471562
    [TBL] [Abstract][Full Text] [Related]  

  • 8. NMR structure of antibiotics plipastatins A and B from Bacillus subtilis inhibitors of phospholipase A(2).
    Volpon L; Besson F; Lancelin JM
    FEBS Lett; 2000 Nov; 485(1):76-80. PubMed ID: 11086169
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Isolation of a gene essential for biosynthesis of the lipopeptide antibiotics plipastatin B1 and surfactin in Bacillus subtilis YB8.
    Tsuge K; Ano T; Shoda M
    Arch Microbiol; 1996 Apr; 165(4):243-51. PubMed ID: 8639027
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Isolation and characterization of a halotolerant Bacillus subtilis BBK-1 which produces three kinds of lipopeptides: bacillomycin L, plipastatin, and surfactin.
    Roongsawang N; Thaniyavarn J; Thaniyavarn S; Kameyama T; Haruki M; Imanaka T; Morikawa M; Kanaya S
    Extremophiles; 2002 Dec; 6(6):499-506. PubMed ID: 12486459
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Antagonistic mechanism of iturin A and plipastatin A from Bacillus amyloliquefaciens S76-3 from wheat spikes against Fusarium graminearum.
    Gong AD; Li HP; Yuan QS; Song XS; Yao W; He WJ; Zhang JB; Liao YC
    PLoS One; 2015; 10(2):e0116871. PubMed ID: 25689464
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Module and individual domain deletions of NRPS to produce plipastatin derivatives in Bacillus subtilis.
    Gao L; Guo J; Fan Y; Ma Z; Lu Z; Zhang C; Zhao H; Bie X
    Microb Cell Fact; 2018 May; 17(1):84. PubMed ID: 29855381
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Co-production of surfactin and a novel bacteriocin by Bacillus subtilis subsp. subtilis H4 isolated from Bikalga, an African alkaline Hibiscus sabdariffa seed fermented condiment.
    Compaoré CS; Nielsen DS; Ouoba LI; Berner TS; Nielsen KF; Sawadogo-Lingani H; Diawara B; Ouédraogo GA; Jakobsen M; Thorsen L
    Int J Food Microbiol; 2013 Apr; 162(3):297-307. PubMed ID: 23466466
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Recent advances in CRISPR/Cas9 mediated genome editing in Bacillus subtilis.
    Hong KQ; Liu DY; Chen T; Wang ZW
    World J Microbiol Biotechnol; 2018 Sep; 34(10):153. PubMed ID: 30269229
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Termination of the structural confusion between plipastatin A1 and fengycin IX.
    Honma M; Tanaka K; Konno K; Tsuge K; Okuno T; Hashimoto M
    Bioorg Med Chem; 2012 Jun; 20(12):3793-8. PubMed ID: 22609073
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cyclic lipopeptides from Bacillus subtilis activate distinct patterns of defence responses in grapevine.
    Farace G; Fernandez O; Jacquens L; Coutte F; Krier F; Jacques P; Clément C; Barka EA; Jacquard C; Dorey S
    Mol Plant Pathol; 2015 Feb; 16(2):177-87. PubMed ID: 25040001
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Translocation of the thioesterase domain for the redesign of plipastatin synthetase.
    Gao L; Liu H; Ma Z; Han J; Lu Z; Dai C; Lv F; Bie X
    Sci Rep; 2016 Dec; 6():38467. PubMed ID: 28009004
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Targeted isolation of a designated region of the Bacillus subtilis genome by recombinational transfer.
    Tomita S; Tsuge K; Kikuchi Y; Itaya M
    Appl Environ Microbiol; 2004 Apr; 70(4):2508-13. PubMed ID: 15066851
    [TBL] [Abstract][Full Text] [Related]  

  • 19. New approach for the detection of non-ribosomal peptide synthetase genes in Bacillus strains by polymerase chain reaction.
    Tapi A; Chollet-Imbert M; Scherens B; Jacques P
    Appl Microbiol Biotechnol; 2010 Feb; 85(5):1521-31. PubMed ID: 19730852
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Production of the non-ribosomal peptide plipastatin in Bacillus subtilis regulated by three relevant gene blocks assembled in a single movable DNA segment.
    Tsuge K; Matsui K; Itaya M
    J Biotechnol; 2007 May; 129(4):592-603. PubMed ID: 17376553
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.