BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 32930589)

  • 1. Predicting Fine Spatial Scale Traffic Noise Using Mobile Measurements and Machine Learning.
    Yin X; Fallah-Shorshani M; McConnell R; Fruin S; Franklin M
    Environ Sci Technol; 2020 Oct; 54(20):12860-12869. PubMed ID: 32930589
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Predicting highly dynamic traffic noise using rotating mobile monitoring and machine learning method.
    Zhang Y; Zhao H; Li Y; Long Y; Liang W
    Environ Res; 2023 Jul; 229():115896. PubMed ID: 37054832
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Temporal and spatial variations in road traffic noise for different frequency components in metropolitan Taichung, Taiwan.
    Wang VS; Lo EW; Liang CH; Chao KP; Bao BY; Chang TY
    Environ Pollut; 2016 Dec; 219():174-181. PubMed ID: 27814533
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Application of land-use regression models to estimate sound pressure levels and frequency components of road traffic noise in Taichung, Taiwan.
    Chang TY; Liang CH; Wu CF; Chang LT
    Environ Int; 2019 Oct; 131():104959. PubMed ID: 31284109
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Development and application of an aerosol screening model for size-resolved urban aerosols.
    Stanier CO; Lee SR;
    Res Rep Health Eff Inst; 2014 Jun; (179):3-79. PubMed ID: 25145039
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Vehicular traffic noise modelling of urban area-a contouring and artificial neural network based approach.
    Debnath A; Singh PK; Banerjee S
    Environ Sci Pollut Res Int; 2022 Jun; 29(26):39948-39972. PubMed ID: 35112254
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparison of Machine Learning and Land Use Regression for fine scale spatiotemporal estimation of ambient air pollution: Modeling ozone concentrations across the contiguous United States.
    Ren X; Mi Z; Georgopoulos PG
    Environ Int; 2020 Sep; 142():105827. PubMed ID: 32593834
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Integrating random forests and propagation models for high-resolution noise mapping.
    Liu Y; Oiamo T; Rainham D; Chen H; Hatzopoulou M; Brook JR; Davies H; Goudreau S; Smargiassi A
    Environ Res; 2021 Apr; 195():110905. PubMed ID: 33631139
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Vehicular traffic noise prediction using soft computing approach.
    Singh D; Nigam SP; Agrawal VP; Kumar M
    J Environ Manage; 2016 Dec; 183():59-66. PubMed ID: 27576153
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Machine Learning Models for the Hearing Impairment Prediction in Workers Exposed to Complex Industrial Noise: A Pilot Study.
    Zhao Y; Li J; Zhang M; Lu Y; Xie H; Tian Y; Qiu W
    Ear Hear; 2019; 40(3):690-699. PubMed ID: 30142102
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Random effect generalized linear model-based predictive modelling of traffic noise.
    Mann S; Singh G
    Environ Monit Assess; 2024 Jan; 196(2):168. PubMed ID: 38236358
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evaluating heterogeneity in indoor and outdoor air pollution using land-use regression and constrained factor analysis.
    Levy JI; Clougherty JE; Baxter LK; Houseman EA; Paciorek CJ;
    Res Rep Health Eff Inst; 2010 Dec; (152):5-80; discussion 81-91. PubMed ID: 21409949
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Machine learning models accurately predict ozone exposure during wildfire events.
    Watson GL; Telesca D; Reid CE; Pfister GG; Jerrett M
    Environ Pollut; 2019 Nov; 254(Pt A):112792. PubMed ID: 31421571
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of long-term exposure to traffic-related air pollution on respiratory and cardiovascular mortality in the Netherlands: the NLCS-AIR study.
    Brunekreef B; Beelen R; Hoek G; Schouten L; Bausch-Goldbohm S; Fischer P; Armstrong B; Hughes E; Jerrett M; van den Brandt P
    Res Rep Health Eff Inst; 2009 Mar; (139):5-71; discussion 73-89. PubMed ID: 19554969
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Vehicular traffic noise prediction and propagation modelling using neural networks and geospatial information system.
    Ahmed AA; Pradhan B
    Environ Monit Assess; 2019 Feb; 191(3):190. PubMed ID: 30809746
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Capturing the spatial variability of noise levels based on a short-term monitoring campaign and comparing noise surfaces against personal exposures collected through a panel study.
    Fallah-Shorshani M; Minet L; Liu R; Plante C; Goudreau S; Oiamo T; Smargiassi A; Weichenthal S; Hatzopoulou M
    Environ Res; 2018 Nov; 167():662-672. PubMed ID: 30241005
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Temporal and spatial variability of traffic-related noise in the City of Toronto, Canada.
    Zuo F; Li Y; Johnson S; Johnson J; Varughese S; Copes R; Liu F; Wu HJ; Hou R; Chen H
    Sci Total Environ; 2014 Feb; 472():1100-7. PubMed ID: 24361745
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evaluation of traffic noise pollution in Amman, Jordan.
    Jamrah A; Al-Omari A; Sharabi R
    Environ Monit Assess; 2006 Sep; 120(1-3):499-525. PubMed ID: 16741795
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Long term effects of traffic noise on mortality in the city of Barcelona, 2004-2007.
    Barceló MA; Varga D; Tobias A; Diaz J; Linares C; Saez M
    Environ Res; 2016 May; 147():193-206. PubMed ID: 26894815
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Unveiling tropospheric ozone by the traditional atmospheric model and machine learning, and their comparison:A case study in hangzhou, China.
    Feng R; Zheng HJ; Zhang AR; Huang C; Gao H; Ma YC
    Environ Pollut; 2019 Sep; 252(Pt A):366-378. PubMed ID: 31158665
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.