These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
5. Influence of the Ether Functional Group on Ketohydroperoxide Formation in Cyclic Hydrocarbons: Tetrahydropyran and Cyclohexane. Davis JC; Koritzke AL; Caravan RL; Antonov IO; Christianson MG; Doner AC; Osborn DL; Sheps L; Taatjes CA; Rotavera B J Phys Chem A; 2019 May; 123(17):3634-3646. PubMed ID: 30865470 [TBL] [Abstract][Full Text] [Related]
6. Kinetics and Dynamics of Cyclopentanone Thermal Decomposition in Gas Phase. Priya H; Halder R; Paranjothy M Chemphyschem; 2024 Sep; ():e202400825. PubMed ID: 39318121 [TBL] [Abstract][Full Text] [Related]
7. Collision Induced Dissociation of Deprotonated Isoxazole and 3-Methyl Isoxazole via Direct Chemical Dynamics Simulations. Priya H; Paranjothy M J Am Soc Mass Spectrom; 2023 Apr; 34(4):710-719. PubMed ID: 36951239 [TBL] [Abstract][Full Text] [Related]
8. Formation of Organic Acids and Carbonyl Compounds in n-Butane Oxidation via γ-Ketohydroperoxide Decomposition. Popolan-Vaida DM; Eskola AJ; Rotavera B; Lockyear JF; Wang Z; Sarathy SM; Caravan RL; Zádor J; Sheps L; Lucassen A; Moshammer K; Dagaut P; Osborn DL; Hansen N; Leone SR; Taatjes CA Angew Chem Int Ed Engl; 2022 Oct; 61(42):e202209168. PubMed ID: 35895936 [TBL] [Abstract][Full Text] [Related]
9. Competing Molecular and Radical Pathways in the Dissociation of Halons via Direct Chemical Dynamics Simulations. Godara S; Paranjothy M J Phys Chem A; 2019 Oct; 123(40):8527-8535. PubMed ID: 31539256 [TBL] [Abstract][Full Text] [Related]
10. Ab initio molecular dynamics of high-temperature unimolecular dissociation of gas-phase RDX and its dissociation products. Schweigert IV J Phys Chem A; 2015 Mar; 119(12):2747-59. PubMed ID: 25738393 [TBL] [Abstract][Full Text] [Related]
11. Unimolecular decomposition of acetyl peroxy radical: a potential source of tropospheric ketene. Sandhiya L; Senthilkumar K Phys Chem Chem Phys; 2020 Dec; 22(46):26819-26827. PubMed ID: 33231595 [TBL] [Abstract][Full Text] [Related]
12. Time-resolved measurements of product formation in the low-temperature (550-675 K) oxidation of neopentane: a probe to investigate chain-branching mechanism. Eskola AJ; Antonov IO; Sheps L; Savee JD; Osborn DL; Taatjes CA Phys Chem Chem Phys; 2017 May; 19(21):13731-13745. PubMed ID: 28503692 [TBL] [Abstract][Full Text] [Related]
13. Dynamics simulations and statistical modeling of thermal decomposition of 1-ethyl-3-methylimidazolium dicyanamide and 1-ethyl-2,3-dimethylimidazolium dicyanamide. Liu J; Chambreau SD; Vaghjiani GL J Phys Chem A; 2014 Nov; 118(47):11133-44. PubMed ID: 25275818 [TBL] [Abstract][Full Text] [Related]
14. New pathways for formation of acids and carbonyl products in low-temperature oxidation: the Korcek decomposition of γ-ketohydroperoxides. Jalan A; Alecu IM; Meana-Pañeda R; Aguilera-Iparraguirre J; Yang KR; Merchant SS; Truhlar DG; Green WH J Am Chem Soc; 2013 Jul; 135(30):11100-14. PubMed ID: 23862563 [TBL] [Abstract][Full Text] [Related]
15. Chemical Dynamics Simulations of Curtius Reaction of Acetyl- and Fluorocarbonyl Azides. Godara S; Radhakrishnan A; Paranjothy M J Phys Chem A; 2020 Aug; 124(32):6438-6444. PubMed ID: 32668155 [TBL] [Abstract][Full Text] [Related]
16. Use of Direct Dynamics Simulations to Determine Unimolecular Reaction Paths and Arrhenius Parameters for Large Molecules. Yang L; Sun R; Hase WL J Chem Theory Comput; 2011 Nov; 7(11):3478-83. PubMed ID: 26598247 [TBL] [Abstract][Full Text] [Related]
17. Classical Dynamics Simulations of Dissociation of Protonated Tryptophan in the Gas Phase. Krishnan Y; Sharma N; Lourderaj U; Paranjothy M J Phys Chem A; 2017 Jun; 121(23):4389-4396. PubMed ID: 28537746 [TBL] [Abstract][Full Text] [Related]