These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

295 related articles for article (PubMed ID: 32930890)

  • 1. Extracellular electron uptake by autotrophic microbes: physiological, ecological, and evolutionary implications.
    Gupta D; Guzman MS; Bose A
    J Ind Microbiol Biotechnol; 2020 Oct; 47(9-10):863-876. PubMed ID: 32930890
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Photoferrotrophs Produce a PioAB Electron Conduit for Extracellular Electron Uptake.
    Gupta D; Sutherland MC; Rengasamy K; Meacham JM; Kranz RG; Bose A
    mBio; 2019 Nov; 10(6):. PubMed ID: 31690680
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Phototrophic extracellular electron uptake is linked to carbon dioxide fixation in the bacterium Rhodopseudomonas palustris.
    Guzman MS; Rengasamy K; Binkley MM; Jones C; Ranaivoarisoa TO; Singh R; Fike DA; Meacham JM; Bose A
    Nat Commun; 2019 Mar; 10(1):1355. PubMed ID: 30902976
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Syntrophic anaerobic photosynthesis via direct interspecies electron transfer.
    Ha PT; Lindemann SR; Shi L; Dohnalkova AC; Fredrickson JK; Madigan MT; Beyenal H
    Nat Commun; 2017 Jan; 8():13924. PubMed ID: 28067226
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Extracellular Electron Uptake: Among Autotrophs and Mediated by Surfaces.
    Tremblay PL; Angenent LT; Zhang T
    Trends Biotechnol; 2017 Apr; 35(4):360-371. PubMed ID: 27816255
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Photoferrotrophy and phototrophic extracellular electron uptake is common in the marine anoxygenic phototroph Rhodovulum sulfidophilum.
    Gupta D; Guzman MS; Rengasamy K; Stoica A; Singh R; Ranaivoarisoa TO; Davenport EJ; Bai W; McGinley B; Meacham JM; Bose A
    ISME J; 2021 Nov; 15(11):3384-3398. PubMed ID: 34054125
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enhancement of cell growth by uncoupling extracellular electron uptake and oxidative stress production in sediment sulfate-reducing bacteria.
    Deng X; Saito J; Kaksonen A; Okamoto A
    Environ Int; 2020 Nov; 144():106006. PubMed ID: 32795748
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microbial electron uptake in microbial electrosynthesis: a mini-review.
    Karthikeyan R; Singh R; Bose A
    J Ind Microbiol Biotechnol; 2019 Oct; 46(9-10):1419-1426. PubMed ID: 30923971
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Molecular Mechanisms of Microbial Extracellular Electron Transfer: The Importance of Multiheme Cytochromes.
    Paquete CM; Morgado L; Salgueiro CA; Louro RO
    Front Biosci (Landmark Ed); 2022 Jun; 27(6):174. PubMed ID: 35748250
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tracking Electron Uptake from a Cathode into
    Rowe AR; Rajeev P; Jain A; Pirbadian S; Okamoto A; Gralnick JA; El-Naggar MY; Nealson KH
    mBio; 2018 Feb; 9(1):. PubMed ID: 29487241
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electron uptake by iron-oxidizing phototrophic bacteria.
    Bose A; Gardel EJ; Vidoudez C; Parra EA; Girguis PR
    Nat Commun; 2014 Feb; 5():3391. PubMed ID: 24569675
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electrotrophy: Other microbial species, iron, and electrodes as electron donors for microbial respirations.
    Lovley DR
    Bioresour Technol; 2022 Feb; 345():126553. PubMed ID: 34906705
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Microbial community structure and function of nitrobenzene reduction biocathode in response to carbon source switchover.
    Liang B; Cheng H; Van Nostrand JD; Ma J; Yu H; Kong D; Liu W; Ren N; Wu L; Wang A; Lee DJ; Zhou J
    Water Res; 2014 May; 54():137-48. PubMed ID: 24565804
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Redox-Active Polymers Connecting Living Microbial Cells to an Extracellular Electrical Circuit.
    Kaneko M; Ishihara K; Nakanishi S
    Small; 2020 Aug; 16(34):e2001849. PubMed ID: 32734709
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evidence for autotrophic growth of purple sulfur bacteria using pyrite as electron and sulfur source.
    Alarcon HV; Mohl JE; Chong GW; Betancourt A; Wang Y; Leng W; White JC; Xu J
    Appl Environ Microbiol; 2024 Jun; ():e0086324. PubMed ID: 38899885
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Novel Outlook in Microbial Ecology: Nonmutualistic Interspecies Electron Transfer.
    Moscoviz R; Quéméner ED; Trably E; Bernet N; Hamelin J
    Trends Microbiol; 2020 Apr; 28(4):245-253. PubMed ID: 32155432
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bioenergetic challenges of microbial iron metabolisms.
    Bird LJ; Bonnefoy V; Newman DK
    Trends Microbiol; 2011 Jul; 19(7):330-40. PubMed ID: 21664821
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Beyond the Calvin cycle: autotrophic carbon fixation in the ocean.
    Hügler M; Sievert SM
    Ann Rev Mar Sci; 2011; 3():261-89. PubMed ID: 21329206
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Native metals, electron bifurcation, and CO
    Sousa FL; Preiner M; Martin WF
    Curr Opin Microbiol; 2018 Jun; 43():77-83. PubMed ID: 29316496
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Metagenomic Signatures of Microbial Communities in Deep-Sea Hydrothermal Sediments of Azores Vent Fields.
    Cerqueira T; Barroso C; Froufe H; Egas C; Bettencourt R
    Microb Ecol; 2018 Aug; 76(2):387-403. PubMed ID: 29354879
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.