These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

265 related articles for article (PubMed ID: 32931268)

  • 1. Solvation Free Energies and Adsorption Energies at the Metal/Water Interface from Hybrid Quantum-Mechanical/Molecular Mechanics Simulations.
    Clabaut P; Schweitzer B; Götz AW; Michel C; Steinmann SN
    J Chem Theory Comput; 2020 Oct; 16(10):6539-6549. PubMed ID: 32931268
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Solvation free energies for periodic surfaces: comparison of implicit and explicit solvation models.
    Steinmann SN; Sautet P; Michel C
    Phys Chem Chem Phys; 2016 Nov; 18(46):31850-31861. PubMed ID: 27841404
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Liquid-Phase Effects on Adsorption Processes in Heterogeneous Catalysis.
    Zare M; Saleheen MS; Singh N; Uline MJ; Faheem M; Heyden A
    JACS Au; 2022 Sep; 2(9):2119-2134. PubMed ID: 36186571
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Free Energies of Catalytic Species Adsorbed to Pt(111) Surfaces under Liquid Solvent Calculated Using Classical and Quantum Approaches.
    Zhang X; DeFever RS; Sarupria S; Getman RB
    J Chem Inf Model; 2019 May; 59(5):2190-2198. PubMed ID: 30821458
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Force Field for Water over Pt(111): Development, Assessment, and Comparison.
    Steinmann SN; Ferreira De Morais R; Götz AW; Fleurat-Lessard P; Iannuzzi M; Sautet P; Michel C
    J Chem Theory Comput; 2018 Jun; 14(6):3238-3251. PubMed ID: 29660272
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ten Facets, One Force Field: The GAL19 Force Field for Water-Noble Metal Interfaces.
    Clabaut P; Fleurat-Lessard P; Michel C; Steinmann SN
    J Chem Theory Comput; 2020 Jul; 16(7):4565-4578. PubMed ID: 32413265
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hybrid Quantum Mechanics/Molecular Mechanics Solvation Scheme for Computing Free Energies of Reactions at Metal-Water Interfaces.
    Faheem M; Heyden A
    J Chem Theory Comput; 2014 Aug; 10(8):3354-68. PubMed ID: 26588304
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Combining ab initio quantum mechanics with a dipole-field model to describe acid dissociation reactions in water: first-principles free energy and entropy calculations.
    Maurer P; Iftimie R
    J Chem Phys; 2010 Feb; 132(7):074112. PubMed ID: 20170220
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Calculation of solvation free energy utilizing a constrained QM/MM approach combined with a theory of solutions.
    Takahashi H; Kambe H; Morita A
    J Chem Phys; 2019 Mar; 150(11):114109. PubMed ID: 30902001
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Predicting hydration free energies with a hybrid QM/MM approach: an evaluation of implicit and explicit solvation models in SAMPL4.
    König G; Pickard FC; Mei Y; Brooks BR
    J Comput Aided Mol Des; 2014 Mar; 28(3):245-57. PubMed ID: 24504703
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Estimates of ligand-binding affinities supported by quantum mechanical methods.
    Söderhjelm P; Kongsted J; Genheden S; Ryde U
    Interdiscip Sci; 2010 Mar; 2(1):21-37. PubMed ID: 20640794
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Free energy of solvation of simple ions: molecular-dynamics study of solvation of Cl- and Na+ in the ice/water interface.
    Smith EJ; Bryk T; Haymet AD
    J Chem Phys; 2005 Jul; 123(3):34706. PubMed ID: 16080754
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparison of charge models for fixed-charge force fields: small-molecule hydration free energies in explicit solvent.
    Mobley DL; Dumont E; Chodera JD; Dill KA
    J Phys Chem B; 2007 Mar; 111(9):2242-54. PubMed ID: 17291029
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reconciling Work Functions and Adsorption Enthalpies for Implicit Solvent Models: A Pt (111)/Water Interface Case Study.
    Bramley G; Nguyen MT; Glezakou VA; Rousseau R; Skylaris CK
    J Chem Theory Comput; 2020 Apr; 16(4):2703-2715. PubMed ID: 32182065
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Computations of Absolute Solvation Free Energies of Small Molecules Using Explicit and Implicit Solvent Model.
    Shivakumar D; Deng Y; Roux B
    J Chem Theory Comput; 2009 Apr; 5(4):919-30. PubMed ID: 26609601
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evaluating Solvent Effects at the Aqueous/Pt(111) Interface.
    Iyemperumal SK; Deskins NA
    Chemphyschem; 2017 Aug; 18(16):2171-2190. PubMed ID: 28464413
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Analysis of the conformational properties of amine ligands at the gold/water interface with QM, MM and QM/MM simulations.
    Liang D; Hong J; Fang D; Bennett JW; Mason SE; Hamers RJ; Cui Q
    Phys Chem Chem Phys; 2018 Jan; 20(5):3349-3362. PubMed ID: 29226924
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Performance of the AMOEBA Water Model in the Vicinity of QM Solutes: A Diagnosis Using Energy Decomposition Analysis.
    Mao Y; Shao Y; Dziedzic J; Skylaris CK; Head-Gordon T; Head-Gordon M
    J Chem Theory Comput; 2017 May; 13(5):1963-1979. PubMed ID: 28430427
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Progress in ab initio QM/MM free-energy simulations of electrostatic energies in proteins: accelerated QM/MM studies of pKa, redox reactions and solvation free energies.
    Kamerlin SC; Haranczyk M; Warshel A
    J Phys Chem B; 2009 Feb; 113(5):1253-72. PubMed ID: 19055405
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Comparison of QM/MM Simulations with and without the Drude Oscillator Model Based on Hydration Free Energies of Simple Solutes.
    König G; Pickard FC; Huang J; Thiel W; MacKerell AD; Brooks BR; York DM
    Molecules; 2018 Oct; 23(10):. PubMed ID: 30347691
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.