These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 32931271)

  • 1. Oxidation of Phenolic Aldehydes by Ozone and Hydroxyl Radicals at the Air-Water Interface.
    Rana MS; Guzman MI
    J Phys Chem A; 2020 Oct; 124(42):8822-8833. PubMed ID: 32931271
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Surface Oxidation of Phenolic Aldehydes: Fragmentation, Functionalization, and Coupling Reactions.
    Rana MS; Guzman MI
    J Phys Chem A; 2022 Sep; 126(37):6502-6516. PubMed ID: 36070234
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Oxidation of Phenolic Aldehydes by Ozone and Hydroxyl Radicals at the Air-Solid Interface.
    Rana MS; Guzman MI
    ACS Earth Space Chem; 2022 Dec; 6(12):2900-2909. PubMed ID: 36561198
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Atmospheric Reactivity of Methoxyphenols: A Review.
    Liu C; Chen D; Chen X
    Environ Sci Technol; 2022 Mar; 56(5):2897-2916. PubMed ID: 35188384
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Catechol oxidation by ozone and hydroxyl radicals at the air-water interface.
    Pillar-Little EA; Camm RC; Guzman MI
    Environ Sci Technol; 2014 Dec; 48(24):14352-60. PubMed ID: 25423038
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Oxidation of Catechols at the Air-Water Interface by Nitrate Radicals.
    Rana MS; Guzman MI
    Environ Sci Technol; 2022 Nov; 56(22):15437-15448. PubMed ID: 36318667
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Oxidation of Substituted Catechols at the Air-Water Interface: Production of Carboxylic Acids, Quinones, and Polyphenols.
    Pillar-Little EA; Guzman MI
    Environ Sci Technol; 2017 May; 51(9):4951-4959. PubMed ID: 28394572
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ionic Strength Effect Alters the Heterogeneous Ozone Oxidation of Methoxyphenols in Going from Cloud Droplets to Aerosol Deliquescent Particles.
    Mekic M; Wang Y; Loisel G; Vione D; Gligorovski S
    Environ Sci Technol; 2020 Oct; 54(20):12898-12907. PubMed ID: 32946234
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Heterogeneous Oxidation of Catechol.
    Pillar-Little EA; Zhou R; Guzman MI
    J Phys Chem A; 2015 Oct; 119(41):10349-59. PubMed ID: 26403273
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ionic Strength Effect Triggers Brown Carbon Formation through Heterogeneous Ozone Processing of Ortho-Vanillin.
    Wang Y; Mekic M; Li P; Deng H; Liu S; Jiang B; Jin B; Vione D; Gligorovski S
    Environ Sci Technol; 2021 Apr; 55(8):4553-4564. PubMed ID: 33784089
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Aging of secondary organic aerosol from alpha-pinene ozonolysis: roles of hydroxyl and nitrate radicals.
    Qi L; Nakao S; Cocker DR
    J Air Waste Manag Assoc; 2012 Dec; 62(12):1359-69. PubMed ID: 23362755
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Secondary aerosol formation in incense burning particles by O
    Liang Z; Zhou L; Li X; Cuevas RAI; Tang R; Li M; Cheng C; Chu Y; Lee PKH; Lai ACK; Chan CK
    Sci Total Environ; 2023 Oct; 894():164942. PubMed ID: 37329918
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Time-resolved molecular characterization of limonene/ozone aerosol using high-resolution electrospray ionization mass spectrometry.
    Bateman AP; Nizkorodov SA; Laskin J; Laskin A
    Phys Chem Chem Phys; 2009 Sep; 11(36):7931-42. PubMed ID: 19727500
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Heterogeneous reactions of particulate methoxyphenols with NO₃ radicals: kinetics, products, and mechanisms.
    Liu C; Zhang P; Wang Y; Yang B; Shu J
    Environ Sci Technol; 2012 Dec; 46(24):13262-9. PubMed ID: 23171305
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Kinetics of Limonene Secondary Organic Aerosol Oxidation in the Aqueous Phase.
    Witkowski B; Al-Sharafi M; Gierczak T
    Environ Sci Technol; 2018 Oct; 52(20):11583-11590. PubMed ID: 30207709
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Limononic Acid Oxidation by Hydroxyl Radicals and Ozone in the Aqueous Phase.
    Witkowski B; Jurdana S; Gierczak T
    Environ Sci Technol; 2018 Mar; 52(6):3402-3411. PubMed ID: 29444406
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Insight into the Primary and Secondary Particle-Bound Methoxyphenols and Nitroaromatic Compound Emissions from Solid Fuel Combustion and the Updated Source Tracers.
    Zhang B; Shen Z; He K; Sun J; Huang S; Xu H; Li J; Ho SSH; Cao JJ
    Environ Sci Technol; 2023 Sep; 57(38):14280-14288. PubMed ID: 37706300
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Secondary organic aerosol formation from in-use motor vehicle emissions using a potential aerosol mass reactor.
    Tkacik DS; Lambe AT; Jathar S; Li X; Presto AA; Zhao Y; Blake D; Meinardi S; Jayne JT; Croteau PL; Robinson AL
    Environ Sci Technol; 2014 Oct; 48(19):11235-42. PubMed ID: 25188317
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Synergistic O
    Kenseth CM; Huang Y; Zhao R; Dalleska NF; Hethcox JC; Stoltz BM; Seinfeld JH
    Proc Natl Acad Sci U S A; 2018 Aug; 115(33):8301-8306. PubMed ID: 30076229
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Heterogeneous oxidation by ozone of naphthalene adsorbed at the air-water interface of micron-size water droplets.
    Raja S; Valsaraj KT
    J Air Waste Manag Assoc; 2005 Sep; 55(9):1345-55. PubMed ID: 16259430
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.