These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
138 related articles for article (PubMed ID: 32931433)
1. EMS3: An Improved Algorithm for Finding Edit-Distance Based Motifs. Xiao P; Cai X; Rajasekaran S IEEE/ACM Trans Comput Biol Bioinform; 2021; 18(1):27-37. PubMed ID: 32931433 [TBL] [Abstract][Full Text] [Related]
2. Efficient sequential and parallel algorithms for finding edit distance based motifs. Pal S; Xiao P; Rajasekaran S BMC Genomics; 2016 Aug; 17 Suppl 4(Suppl 4):465. PubMed ID: 27557423 [TBL] [Abstract][Full Text] [Related]
3. Novel algorithms for LDD motif search. Xiao P; Schiller M; Rajasekaran S BMC Genomics; 2019 Jun; 20(Suppl 5):424. PubMed ID: 31167665 [TBL] [Abstract][Full Text] [Related]
5. An Efficient Exact Algorithm for the Motif Stem Search Problem over Large Alphabets. Yu Q; Huo H; Vitter JS; Huan J; Nekrich Y IEEE/ACM Trans Comput Biol Bioinform; 2015; 12(2):384-97. PubMed ID: 26357225 [TBL] [Abstract][Full Text] [Related]
6. Discovering Motifs in Biological Sequences Using the Micron Automata Processor. Roy I; Aluru S IEEE/ACM Trans Comput Biol Bioinform; 2016; 13(1):99-111. PubMed ID: 26886735 [TBL] [Abstract][Full Text] [Related]
8. qPMS7: a fast algorithm for finding (ℓ, d)-motifs in DNA and protein sequences. Dinh H; Rajasekaran S; Davila J PLoS One; 2012; 7(7):e41425. PubMed ID: 22848493 [TBL] [Abstract][Full Text] [Related]
9. Improved Exact Enumerative Algorithms for the Planted (l, d)-Motif Search Problem. Tanaka S IEEE/ACM Trans Comput Biol Bioinform; 2014; 11(2):361-74. PubMed ID: 26355783 [TBL] [Abstract][Full Text] [Related]
11. A correlated motif approach for finding short linear motifs from protein interaction networks. Tan SH; Hugo W; Sung WK; Ng SK BMC Bioinformatics; 2006 Nov; 7():502. PubMed ID: 17107624 [TBL] [Abstract][Full Text] [Related]
12. A cluster refinement algorithm for motif discovery. Li G; Chan TM; Leung KS; Lee KH IEEE/ACM Trans Comput Biol Bioinform; 2010; 7(4):654-68. PubMed ID: 21030733 [TBL] [Abstract][Full Text] [Related]
13. Enhancing of Particle Swarm Optimization Based Method for Multiple Motifs Detection in DNA Sequences Collections. Som-In S; Kimpan W IEEE/ACM Trans Comput Biol Bioinform; 2020; 17(3):990-998. PubMed ID: 30281475 [TBL] [Abstract][Full Text] [Related]
14. Fast and practical algorithms for planted (l, d) motif search. Davila J; Balla S; Rajasekaran S IEEE/ACM Trans Comput Biol Bioinform; 2007; 4(4):544-52. PubMed ID: 17975266 [TBL] [Abstract][Full Text] [Related]
15. PMS5: an efficient exact algorithm for the (ℓ, d)-motif finding problem. Dinh H; Rajasekaran S; Kundeti VK BMC Bioinformatics; 2011 Oct; 12():410. PubMed ID: 22024209 [TBL] [Abstract][Full Text] [Related]
16. Efficient sequential and parallel algorithms for planted motif search. Nicolae M; Rajasekaran S BMC Bioinformatics; 2014 Jan; 15():34. PubMed ID: 24479443 [TBL] [Abstract][Full Text] [Related]
17. EMD: an ensemble algorithm for discovering regulatory motifs in DNA sequences. Hu J; Yang YD; Kihara D BMC Bioinformatics; 2006 Jul; 7():342. PubMed ID: 16839417 [TBL] [Abstract][Full Text] [Related]
18. SamSelect: a sample sequence selection algorithm for quorum planted motif search on large DNA datasets. Yu Q; Wei D; Huo H BMC Bioinformatics; 2018 Jun; 19(1):228. PubMed ID: 29914360 [TBL] [Abstract][Full Text] [Related]
19. A speedup technique for (l, d)-motif finding algorithms. Rajasekaran S; Dinh H BMC Res Notes; 2011 Mar; 4():54. PubMed ID: 21385438 [TBL] [Abstract][Full Text] [Related]
20. Discovering multiple realistic TFBS motifs based on a generalized model. Chan TM; Li G; Leung KS; Lee KH BMC Bioinformatics; 2009 Oct; 10():321. PubMed ID: 19811641 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]