These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 32931474)

  • 1. Anomalous behavior of In adatoms during droplet epitaxy on the AlGaAs surfaces.
    Balakirev SV; Solodovnik MS; Eremenko MM; Chernenko NE; Ageev OA
    Nanotechnology; 2020 Nov; 31(48):485604. PubMed ID: 32931474
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Atomic-Scale Characterization of Droplet Epitaxy Quantum Dots.
    Gajjela RSR; Koenraad PM
    Nanomaterials (Basel); 2021 Jan; 11(1):. PubMed ID: 33401568
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of surface gallium termination on the formation and emission energy of an InGaAs wetting layer during the growth of InGaAs quantum dots by droplet epitaxy.
    Fricker D; Atkinson P; Jin X; Lepsa M; Zeng Z; Kovács A; Kibkalo L; Dunin-Borkowski RE; Kardynał BE
    Nanotechnology; 2023 Jan; 34(14):. PubMed ID: 36595322
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Various Quantum- and Nano-Structures by III-V Droplet Epitaxy on GaAs Substrates.
    Lee J; Wang ZhM; Kim E; Kim N; Park Sh; Salamo G
    Nanoscale Res Lett; 2009 Nov; 5(2):308-14. PubMed ID: 20671787
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Highly uniform and symmetric epitaxial InAs quantum dots embedded inside Indium droplet etched nanoholes.
    Yu Y; Zhong H; Yang J; Liu L; Liu J; Yu S
    Nanotechnology; 2019 Nov; 30(48):485001. PubMed ID: 31469109
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modeling of Al and Ga Droplet Nucleation during Droplet Epitaxy or Droplet Etching.
    Heyn C; Feddersen S
    Nanomaterials (Basel); 2021 Feb; 11(2):. PubMed ID: 33673053
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High-temperature droplet epitaxy of symmetric GaAs/AlGaAs quantum dots.
    Bietti S; Basset FB; Tuktamyshev A; Bonera E; Fedorov A; Sanguinetti S
    Sci Rep; 2020 Apr; 10(1):6532. PubMed ID: 32300114
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Anomalous Stranski-Krastanov growth of (111)-oriented quantum dots with tunable wetting layer thickness.
    Schuck CF; Roy SK; Garrett T; Yuan Q; Wang Y; Cabrera CI; Grossklaus KA; Vandervelde TE; Liang B; Simmonds PJ
    Sci Rep; 2019 Dec; 9(1):18179. PubMed ID: 31796804
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Abnormal Stranski-Krastanov Mode Growth of Green InGaN Quantum Dots: Morphology, Optical Properties, and Applications in Light-Emitting Devices.
    Wang L; Wang L; Yu J; Hao Z; Luo Y; Sun C; Han Y; Xiong B; Wang J; Li H
    ACS Appl Mater Interfaces; 2019 Jan; 11(1):1228-1238. PubMed ID: 30521305
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Study of Size, Shape, and Etch pit formation in InAs/InP Droplet Epitaxy Quantum Dots.
    Gajjela RSR; van Venrooij NRS; da Cruz AR; Skiba-Szymanska J; Stevenson RM; Shields AJ; Pryor CE; Koenraad PM
    Nanotechnology; 2022 May; 33(30):. PubMed ID: 35395644
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modeling of Masked Droplet Deposition for Site-Controlled Ga Droplets.
    Feddersen S; Zolatanosha V; Alshaikh A; Reuter D; Heyn C
    Nanomaterials (Basel); 2023 Jan; 13(3):. PubMed ID: 36770427
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Droplet epitaxy of InGaN quantum dots on Si (111) by plasma-assisted molecular beam epitaxy.
    Nurzal N; Hsu TY; Susanto I; Yu IS
    Discov Nano; 2023 Apr; 18(1):60. PubMed ID: 37382746
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mechanism of nucleation and critical layer formation during In/GaAs droplet epitaxy.
    Balakirev SV; Solodovnik MS; Eremenko MM; Konoplev BG; Ageev OA
    Nanotechnology; 2019 Dec; 30(50):505601. PubMed ID: 31480037
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Control of Morphology and Substrate Etching in InAs/InP Droplet Epitaxy Quantum Dots for Single and Entangled Photon Emitters.
    Gajjela RSR; Sala EM; Heffernan J; Koenraad PM
    ACS Appl Nano Mater; 2022 Jun; 5(6):8070-8079. PubMed ID: 35783681
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Temperature Dependence of Carrier Extraction Processes in GaSb/AlGaAs Quantum Nanostructure Intermediate-Band Solar Cells.
    Shoji Y; Tamaki R; Okada Y
    Nanomaterials (Basel); 2021 Jan; 11(2):. PubMed ID: 33573008
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Energy transfer within ultralow density twin InAs quantum dots grown by droplet epitaxy.
    Liang BL; Wang ZM; Wang XY; Lee JH; Mazur YI; Shih CK; Salamo GJ
    ACS Nano; 2008 Nov; 2(11):2219-24. PubMed ID: 19206386
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structural and optical properties of position-retrievable low-density GaAs droplet epitaxial quantum dots for application to single photon sources with plasmonic optical coupling.
    Lee EH; Song JD; Han IK; Chang SK; Langer F; Höfling S; Forchel A; Kamp M; Kim JS
    Nanoscale Res Lett; 2015; 10():114. PubMed ID: 25852409
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Influence of GaAsBi Matrix on Optical and Structural Properties of InAs Quantum Dots.
    Wang P; Pan W; Wu X; Liu J; Cao C; Wang S; Gong Q
    Nanoscale Res Lett; 2016 Dec; 11(1):280. PubMed ID: 27255900
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Droplet etching of deep nanoholes for filling with self-aligned complex quantum structures.
    Küster A; Heyn C; Ungeheuer A; Juska G; Tommaso Moroni S; Pelucchi E; Hansen W
    Nanoscale Res Lett; 2016 Dec; 11(1):282. PubMed ID: 27255902
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High-Yield Fabrication of Entangled Photon Emitters for Hybrid Quantum Networking Using High-Temperature Droplet Epitaxy.
    Basso Basset F; Bietti S; Reindl M; Esposito L; Fedorov A; Huber D; Rastelli A; Bonera E; Trotta R; Sanguinetti S
    Nano Lett; 2018 Jan; 18(1):505-512. PubMed ID: 29239186
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.