These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 32931549)

  • 1. HiSCF: leveraging higher-order structures for clustering analysis in biological networks.
    Hu L; Zhang J; Pan X; Yan H; You ZH
    Bioinformatics; 2021 May; 37(4):542-550. PubMed ID: 32931549
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identifying functional modules in interaction networks through overlapping Markov clustering.
    Shih YK; Parthasarathy S
    Bioinformatics; 2012 Sep; 28(18):i473-i479. PubMed ID: 22962469
    [TBL] [Abstract][Full Text] [Related]  

  • 3. MultiSimNeNc: A network representation learning-based module identification method by network embedding and clustering.
    Wu H; Liang B; Chen Z; Zhang H
    Comput Biol Med; 2023 Apr; 156():106703. PubMed ID: 36889026
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Intrinsic-overlapping co-expression module detection with application to Alzheimer's Disease.
    Manners HN; Roy S; Kalita JK
    Comput Biol Chem; 2018 Dec; 77():373-389. PubMed ID: 30466046
    [TBL] [Abstract][Full Text] [Related]  

  • 5. HipMCL: a high-performance parallel implementation of the Markov clustering algorithm for large-scale networks.
    Azad A; Pavlopoulos GA; Ouzounis CA; Kyrpides NC; Buluç A
    Nucleic Acids Res; 2018 Apr; 46(6):e33. PubMed ID: 29315405
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Improving the sensitivity of sample clustering by leveraging gene co-expression networks in variable selection.
    Wang Z; San Lucas FA; Qiu P; Liu Y
    BMC Bioinformatics; 2014 May; 15():153. PubMed ID: 24885641
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparison of single and module-based methods for modeling gene regulatory networks.
    Hernaez M; Blatti C; Gevaert O
    Bioinformatics; 2020 Jan; 36(2):558-567. PubMed ID: 31287491
    [TBL] [Abstract][Full Text] [Related]  

  • 8. oCEM: Automatic detection and analysis of overlapping co-expressed gene modules.
    Nguyen QH; Le DH
    BMC Genomics; 2022 Jan; 23(1):39. PubMed ID: 34998362
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identification of disease modules using higher-order network structure.
    Singh P; Kuder H; Ritz A
    Bioinform Adv; 2023; 3(1):vbad140. PubMed ID: 37860106
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Predicting protein complexes from weighted protein-protein interaction graphs with a novel unsupervised methodology: Evolutionary enhanced Markov clustering.
    Theofilatos K; Pavlopoulou N; Papasavvas C; Likothanassis S; Dimitrakopoulos C; Georgopoulos E; Moschopoulos C; Mavroudi S
    Artif Intell Med; 2015 Mar; 63(3):181-9. PubMed ID: 25765008
    [TBL] [Abstract][Full Text] [Related]  

  • 11. FSM: Fast and scalable network motif discovery for exploring higher-order network organizations.
    Wang T; Peng J; Peng Q; Wang Y; Chen J
    Methods; 2020 Feb; 173():83-93. PubMed ID: 31306744
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A new correlation clustering method for cancer mutation analysis.
    Hou JP; Emad A; Puleo GJ; Ma J; Milenkovic O
    Bioinformatics; 2016 Dec; 32(24):3717-3728. PubMed ID: 27540270
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bipartite tight spectral clustering (BiTSC) algorithm for identifying conserved gene co-clusters in two species.
    Sun YE; Zhou HJ; Li JJ
    Bioinformatics; 2021 Jun; 37(9):1225-1233. PubMed ID: 32814973
    [TBL] [Abstract][Full Text] [Related]  

  • 14. CyClus3D: a Cytoscape plugin for clustering network motifs in integrated networks.
    Audenaert P; Van Parys T; Brondel F; Pickavet M; Demeester P; Van de Peer Y; Michoel T
    Bioinformatics; 2011 Jun; 27(11):1587-8. PubMed ID: 21478195
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparison and evaluation of network clustering algorithms applied to genetic interaction networks.
    Hou L; Wang L; Berg A; Qian M; Zhu Y; Li F; Deng M
    Front Biosci (Elite Ed); 2012 Jan; 4(6):2150-61. PubMed ID: 22202027
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Network inference with ensembles of bi-clustering trees.
    Pliakos K; Vens C
    BMC Bioinformatics; 2019 Oct; 20(1):525. PubMed ID: 31660848
    [TBL] [Abstract][Full Text] [Related]  

  • 17. C-DEVA: Detection, evaluation, visualization and annotation of clusters from biological networks.
    Li M; Tang Y; Wu X; Wang J; Wu FX; Pan Y
    Biosystems; 2016 Dec; 150():78-86. PubMed ID: 27530307
    [TBL] [Abstract][Full Text] [Related]  

  • 18. NCMine: Core-peripheral based functional module detection using near-clique mining.
    Tadaka S; Kinoshita K
    Bioinformatics; 2016 Nov; 32(22):3454-3460. PubMed ID: 27466623
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Detecting critical state before phase transition of complex biological systems by hidden Markov model.
    Chen P; Liu R; Li Y; Chen L
    Bioinformatics; 2016 Jul; 32(14):2143-50. PubMed ID: 27153710
    [TBL] [Abstract][Full Text] [Related]  

  • 20. HOGMMNC: a higher order graph matching with multiple network constraints model for gene-drug regulatory modules identification.
    Chen J; Peng H; Han G; Cai H; Cai J
    Bioinformatics; 2019 Feb; 35(4):602-610. PubMed ID: 30052773
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.